Curtins | Building a better future

Knocknagael, Inverness

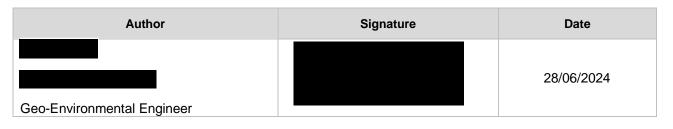
Phase 2 Ground Investigation Report

Curtins Ref: 085444-CUR-00-XX-RP-GE-00002

Revision: P03 Issue Date: 28 June 2024

Client Name: Field

Client Address: Fora Montacute Yards, 186 Shoreditch High Street, London E1 6HU


Site Address: Knocknagael, Inverness IV2 6DL

CIVILS STRUCTURES TRANSPORT PLANNING ENVIRONMENTAL INFRASTRUCTURE EXPERT GEOTECHNICAL CONSERVATION & HERITAGE Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottingham

Control Sheet

Rev	Description	Checked	Issued	Date
P03	First Issue	CD	ML	28/06/2024

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Consulting Limited with respect to the information contained in the report will not extend to any third party.

Reviewed & Authorised	Signature	Date
Principal Geo-Environmental Engineer		28/06/2024
Principal Geotechnical Engineer		11/04/2024

085444 Knocknagael, Inverness Phase 2 Ground Investigation Report

Curtins

Contents

1.0	Introduction	1
1.1	Project Background	1
1.2	Scope of Services	1
2.0	Site Setting	2
2.1	Current Setting	2
2.2	Surrounding Land Use	3
2.3	Site History	3
2.4	Geology, Hydrogeology and Hydrology	3
2.5	Unexploded Ordnance (UXO) Risk Assessment	3
3.0	Initial Conceptual Site Model	4
4.0	Fieldworks	2
4.1	General	2
4.2	Soil Logging and Sampling	3
4.3	Post Investigation Monitoring	3
5.0	In-Situ & Laboratory Testing	4
5.1	Environmental Chemical Testing	4
5.2	Geotechnical Testing	4
5.3	Infiltration Testing	6
0.0		
6.0	Ground Conditions	
		7
6.0	Ground Conditions	7 7
6.0 6.1	Ground Conditions	7 7
6.0 6.1 6.2	Ground Conditions Encountered Ground Conditions Visual and Olfactory Indicators of Contamination	7 0 0
6.0 6.1 6.2 6.3	Ground Conditions Encountered Ground Conditions Visual and Olfactory Indicators of Contamination Obstructions Encountered	7 0 0
6.0 6.1 6.2 6.3 6.4	Ground Conditions Encountered Ground Conditions Visual and Olfactory Indicators of Contamination Obstructions Encountered Groundwater	7 0 0 0 2
6.0 6.1 6.2 6.3 6.4 7.0	Ground Conditions	7 0 0 0 2
6.0 6.1 6.2 6.3 6.4 7.0 7.1	Ground Conditions Encountered Ground Conditions Visual and Olfactory Indicators of Contamination Obstructions Encountered Groundwater Groundwater Contamination Risk Assessment Human Health GQRA	7 0 0 2 2
6.0 6.1 6.2 6.3 6.4 7.0 7.1 7.2	Ground Conditions Image: Construction Conditions Encountered Ground Conditions Image: Construction Construction Constructions Encountered Obstructions Encountered Image: Construction Constructin Construction Construction Construction Cons	7 7 0 0 2 2 4 4
6.0 6.1 6.2 6.3 6.4 7.0 7.1 7.2 7.3	Ground Conditions Image: Construction Sector Contamination Visual and Olfactory Indicators of Contamination Image: Contamination Obstructions Encountered Image: Contamination Groundwater Image: Contamination Risk Assessment Human Health GQRA Image: Contamination Water Environment – GQRA Image: Contamination Ground Gas – GQRA Image: Contamination	7 7 0 0 2 4 4 6
6.0 6.1 6.2 6.3 6.4 7.0 7.1 7.2 7.3 7.4	Ground Conditions T Encountered Ground Conditions T Visual and Olfactory Indicators of Contamination T Obstructions Encountered T Ground water T Ground and Groundwater Contamination Risk Assessment T Human Health GQRA T Water Environment – GQRA T Ground Gas T	7 0 0 2 4 4 6 7
6.0 6.1 6.2 6.3 6.4 7.0 7.1 7.2 7.3 7.4 8.0	Ground Conditions T Encountered Ground Conditions. T Visual and Olfactory Indicators of Contamination T Obstructions Encountered T Ground water T Ground and Groundwater Contamination Risk Assessment. T Human Health GQRA T Water Environment – GQRA T Ground Gas G Radon Gas T Revised Conceptual Site Model T	7 0 0 2 4 4 6 7 0
6.0 6.1 6.2 6.3 6.4 7.0 7.1 7.2 7.3 7.4 8.0 9.0	Ground Conditions Image: Constant Structure Constructure Const	7 0 0 2 2 4 6 7 0 0
6.0 6.1 6.2 6.3 6.4 7.0 7.1 7.2 7.3 7.4 8.0 9.0 9.1	Ground Conditions Image: Sector S	7 0 0 2 4 4 6 7 0 2
6.0 6.1 6.2 6.3 6.4 7.0 7.1 7.2 7.3 7.4 8.0 9.0 9.1 9.2	Ground Conditions Fincountered Ground Conditions Encountered Ground Conditions Fincountered Ground Conditions Visual and Olfactory Indicators of Contamination Fincountered Obstructions Encountered Fincoundwater Ground water Fincoundwater Ground and Groundwater Contamination Risk Assessment Fincoundwater Human Health GQRA Fincound Gas Human Health GQRA Fincound Gas Ground Gas Gound Gas Feliminary Geotechnical Assessment Fincoundwater Geotechnical Considerations Foundation Design	7 0 0 2 2 4 4 6 7 0 2 3
6.0 6.1 6.2 6.3 6.4 7.0 7.1 7.2 7.3 7.4 8.0 9.0 9.1 9.2 9.3	Ground Conditions Image: Construction of Contamination Image: Construction of Contamination Visual and Olfactory Indicators of Contamination Image: Construction of Contamination Image: Construction of Contamination Obstructions Encountered Image: Construction of Contamination Image: Construction of Contamination Image: Construction of Contamination Ground and Groundwater Contamination Risk Assessment Image: Contamination Risk Assessment Image: Contamination Risk Assessment Human Health GQRA Image: Contamination Risk Assessment Image: Contamination Risk Assessment Image: Contamination Risk Assessment Water Environment – GQRA Image: Contamination Risk Assessment Image: Contamin	7 0 0 2 2 4 4 6 7 0 0 2 3 3

Curtins

Phase 2 Ground Investigation Report

12.0	Appendices	. 29
11.0	Kererences	. 21
	References	
10.3	Recommendations	. 26
10.2	Geotechnical	. 25
10.1	Geo-Environmental	. 25

Appendices

- Appendix A Drawings
- Appendix B Supporting Information
- Appendix C Environmental Testing Results
- Appendix D Tier 1 Thesholds.
- Appendix E Qualitative Risk Assessment Rationale

Executive Summary

Appointment	Curtins were instructed by Field, to undertake an intrusive Phase 2 Ground Investigation for the proposed battery energy storage system (BESS) in Knocknagael, Inverness. The site is centred on National Grid Reference (NGR) 264900, 839000. This report has been undertaken to support the development of a battery storage facility with associated access and drainage infrastructure.
Current Site Status	The development site is currently situated on a vacant site, currently used for agricultural purposes, consisting of open fields. The site is topographically sloping at circa 198m AOD in the southeast to 152m AOD in the northwest.
Fieldworks Undertaken	The intrusive ground investigation was undertaken by Curtins between 12th and 14th February 2024. Fieldworks comprised the advancement of 5 No. Hydraulic Percussive boreholes, 1 Cable Percussive borehole and 24 Machine excavated trial pits. A total of three return ground gas and groundwater monitoring visits have been undertaken. The arisings of the boreholes and trial pits were logged by a suitably qualified Curtins engineer and representative samples of the soil were submitted for geotechnical and environmental laboratory testing.
Ground Conditions	Ground level across the site was homogenous, comprising topsoil. Topsoil was overlying superficial Hummock Glacial Deposits with thickness varying between 0.25m and 1.95m. Bedrock deposits across the site consisted of the Inshes Flagstone Formation which featured a mixture of mudstone and sandstone. Topsoil is characterised as a dark brown very gravelly silty sand with very fine rootlets. Topsoil thickness was variable from 0.10m in multiple locations to 0.60m (TP19) in the south-west of the site. Superficial Hummock Glacial Deposits were encountered beneath topsoil in all exploratory hole locations. Typically, superficial deposits were encountered as a light brown or grey, very gravelly clayey fine to coarse subangular SAND with high cobble content. Cobbles were subangular to angular of mudstone and sandstone. Bedrock of the Inshes Flagstone Formation was present beneath superficial deposits in all locations and continued until maximum exploratory location depths of 2.30m bgl (186.38m AOD) were reached, whereby refusals were encountered due to the hard nature of the bedrock. Bedrock was typically characterised as reddish-purple SANDSTONE or MUDSTONE, often initially weathered at shallow depths. Mudstone was typically encountered in the north-west of the site whereas sandstone was typically encountered in south-east.

Phase 2 Ground Investigation Report

Laboratory Testing	Representative samples of the site soils were obtained and submitted to a suitably accredited laboratory for environmental and geotechnical analyses. The environmental testing comprised the suite outlined in Table 5.1.1. The geotechnical testing undertaken comprised of water content, bulk density, particle density, CBR, dry density and water content/dry density relationship.
General Quantitative Risk Assessment	 Human Health – The risk to future site users is considered Low. Water Environment – The risk presented to water environments is assessed to be Low. Ground Gas – The risk presented by ground gases is assessed as Low for the site and no ground gas protection measures are required for the development site. Radon - The BGS Radon Mapping confirms the site is situated in a low probability radon area. Therefore, no radon protective measures are necessary in the construction of new dwellings or extensions.
Preliminary Geotechnical Assessment	It is anticipated that a cut and fill will be undertaken to achieve formation level. Depending on the level of cut and location, cut materials are likely to comprise Hummock Glacial Deposits and/or weathered bedrock (Inshes Flagstone Formation – mudstone and sandstone). It is likely that the material will classify as a Class 1 or Class 2 Acceptable Earthworks Fill subject to the removal of overside material (>300mm). The proposed development comprises a battery storage facility with a maximum expected loading of 50kN/m2. Without knowing the cut and fill details this foundation advice should be considered as preliminary. A conservative presumed allowable bearing capacity of 150kPa should be assumed, we have provided a conservative bearing capacity from published literature in the absence of rock data and assumed an extremely weak rock. Should a raft solution be adopted, fill should be placed to an earthworks specification and a detailed settlement assessment should be undertaken to determine the material parameters required for the fill and to detail the compaction requirements, to ensure settlements are not excessive. It is anticipated that earthworks will be required during the enabling works and shallow excavations during the construction phase. Given the presence of seepages within the Hummock Glacial Deposits, perched groundwater cannot be discounted and may be present in shallow excavations. A conservative CBR value of 4.5% is recommended for preliminary designs, based on in-situ and laboratory CBR testing.

Phase 2 Ground Investigation Report

Recommendations Infiltration testing in accordance with BRE365 was undertaken at one location (SA01) at the site. The soakaway test was unsuccessful due to the 75% and 25% drop in water levels being unachieved. The poor infiltration is likely a result of the clayey nature of the Hummock Glacial Deposits and impermeable nature of the mudstone bedrock. In summary, the following recommendations are made: Should a raft solution be adopted, fill should be placed to an earthworks specification and a detailed settlement assessment should be undertaken to determine the material parameters. Earthworks should be completed to an Earthworks specification. Site won material is recommended to be regraded to remove oversized constituents (>300m) to fit a suitable earthworks classification. Additional CBR testing is required at formation level on the completion of earthworks.

Curtins

1.0 Introduction

1.1 **Project Background**

Curtins were instructed by Field, to undertake an intrusive Phase 2 Ground Investigation for the proposed battery energy storage system (BESS) in Knocknagael, Inverness.

This report has been undertaken to support the development of a BESS with associated access and drainage infrastructure. The Proposed Development drawings are included in Appendix A.

Curtins have previously provided a Phase 1 Preliminary Risk Assessment (ref. 085444-CUR-XX-XX-RP-GE-0001) (1) for the Proposed Development which recommended a Phase 2 ground investigation to further determine the contamination risk on-site and support the design.

1.2 Scope of Services

The investigation was undertaken to provide an assessment of both geo-environmental and geotechnical ground conditions on the Site with respect to any potential contamination in the underlying soils and or groundwater.

Specifically, the report is intended to:

- a) Determine if there is a risk of the proposed end user being adversely impacted upon by potential contamination in shallow site soils that may be present on the site due to its known current, recent and historical use.
- b) Determine if there is a risk of groundwater and/ or surface water being adversely impacted upon by potential contamination that may be present on the site due to its known current, recent and historical use.
- c) Determine if there is a risk to the end user from soil gases including methane, carbon dioxide, oxygen, and hydrogen sulphide.
- d) Determine shallow and deep ground conditions including the presence of any peat on the Site.
- e) Provide recommendations for the design of foundations.
- f) Provide recommendations for the hardstanding design.
- g) Provide recommendations for the specification of sub-structure concrete.

2.0 Site Setting

2.1 Current Setting

The development site is currently situated on a vacant site, currently used for agricultural purposes, consisting of open fields. The site is topographically sloping at circa 198m AOD in the southeast to 152m AOD in the northwest.

The site is centred on National Grid Reference (NGR) 264900, 839000. The site location is presented in Figure 2.1 below. Curtins have previously undertaken a Phase 1 Preliminary Risk Assessment for the site (085444-CUR-XX-RP-GE-00001). Drawing 085444-CUR-XX-XX-D-GE-00003-P01, contained within Appendix A, shows the main development area to the west of the road running north to south through the planning area. The Proposed Development's overall 'redline' site boundary (42.83 ha) is larger than the proposed development footprint (approximately 6 ha). The primary reason for this has been to incorporate the entire, existing Knocknagael substation site into the planning boundary to ensure appropriate flexibility is provided along the proposed cable route corridor and into the Knocknagael substation site. The cable route corridor is indicative at this stage, and an enlarged planning boundary allows the route to be adjusted, if necessary, once the cable route has been confirmed with SSEN. The point-of-connection sits within the existing Knocknagael substation on SSEN's land. The point-ofconnection works will be undertaken by SSEN, with the exact location of the point-of connection and associated cable route subject to SSEN's guidance and coordination with other proposed connections. Additional land is also included in planningboundary in the northern area of the Site to accommodate drainage arrangements and landscape bunding. The increased planning boundary area has allowed for the ongoing refinement of the siting of the northern attenuation basin and the articulation of landscape bunds following the outcomes of environmental studies, detailed cut and fill design, and engagement with the local planning authority.

Figure 2.1 – Site development boundary is outlined in Red

Phase 2 Ground Investigation Report

Curtins

2.2 Surrounding Land Use

The immediate surrounding land use to the development site is highlighted in Table 2.2.

	N	Road and agricultural land. Scrubland and trees to north-east of the site
Surrounding	E	Road with electrical substation beyond
Area	S	Woodland with agricultural land beyond
	W	Agricultural land

Table 2.2 – Surrounding Area

2.3 Site History

With reference to the Curtins Phase 1 Report (1), from the earliest available map extract dating back to 1874, the site was shown as a farmer's field with a small structure in the centre and an adjacent well to the south-west. Between 1874 and 1904, an additional well was shown to the north-east of the central building. There was a gap in map records from 1904 to 1964 and 1964 to 2005, no significant changes on-site were identified during our recent site walkover.

2.4 Geology, Hydrogeology and Hydrology

With reference to the Phase 1 Report, and the 1:50,000 BGS map (Inverness – Sheet 83) the site was noted to be underlain by superficial deposits comprising diamicton, sands and gravels of the Hummock Glacial Deposits. Superficial deposits were in turn underlain by bedrock deposits comprising flaggy sandstones of the Inshes Flagstone Formation. There is no indication on the geological maps that peat is present on the Site.

Details on the hydrogeological classification of the Hummock Glacial Deposits were not given by SEPA mapping tools. The Inshes Flagstone Formation was characterised as a moderately productive aquifer, locally yielding small amounts of groundwater.

There were no licensed surface water abstractions recorded within 1km of the site and no records of a discharge consent within 250m of the site. However, two former wells have been identified on-site from map records.

The nearest surface water feature is the Essich Burn, located circa 50m northwest of the site.

2.5 Unexploded Ordnance (UXO) Risk Assessment

Military activities including those conducted as part of both the First and Second World Wars have resulted in a legacy of unexploded ordnance (UXO) being present within the shallow soils of the UK.

UXO result from various sources including both allied (military training) and German (bombing raids) with a guide figure of approximately 10% of all munitions failing to function as designed.

Phase 2 Ground Investigation Report

Curtins

The likelihood of UXO being encountered on a development site is influenced by several factors including the proximity to strategic targets, the nature of the development works being undertaken and evidence of local damage in the postwar periods amongst others. To determine the likelihood of UXO being present on a site, a stepwise risk assessment process is followed. This process is outlined within CIRIA C681 Unexploded Ordnance: A Guide for the Construction Industry with the following commentary considered to represent a Preliminary Risk Assessment intended to guide if and where there is a requirement for a Detailed Risk Assessment.

The risk presented by Unexploded Ordnance, identified using preliminary Unexploded Bomb (UXB) risk maps retrieved from Zetica UXO, indicates that the site is situated in a designated Low-Risk area in respect to the potential presence of UXB as a result of World War Two bombing (9).

Based on the foregoing commentary, it was recommended that no further action was needed in reference to UXO for the intrusive ground investigation works if undertaken by Curtins.

3.0 Initial Conceptual Site Model

With reference to the Phase 1 Report, the Initial Conceptual Site Model (CSM) provided within the Phase 1 report is included in Table 3.0.

The CSM details the source-pathway-receptor linkages or potential contaminant linkages (PCL) that have been identified for the site. The GQRA details the associated level of risk relating to these potential contaminant linkages.

The CSM concerns risk to human health, Water and Environment. The CSM follows the framework outlined within CIRIA C552 which is summarised within Appendix E.

The 'risk rating' within the CSM refers to the risk that the source, pathway, receptor linkage or PCL is complete. Unless specifically stated it does not necessarily refer to an immediate risk and is intended to be used as a tool to assess the necessity for further assessment/investigation.

Phase 2 Ground Investigation Report

Curtins

Qualitative Risk Assessment

• The table below represents the first stage in the land quality risk assessment process; the Qualitative Risk Assessment. • In order for a development site to be deemed 'suitable for use' the level of risk needs to be brought down to acceptable levels, i.e., low to negligible risk. The purpose of each stage of risk assessment is ultimately to establish if there is a requirement for additional levels of assessment to be made in order to have sufficient confidence to support a risk characterisation or management decision, e.g., remedial action.

• In the absence of specific site data, a Generic Quantitative Risk Assessment is invariably recommended.

	Conceptual Site Model	Qualitative Risk Assessment				
Source Pathway(s)		Receptor(s) Consequence		Likelihood of Occurrence Risk Rating		Recommended Actions
	Direct contact, ingestion, inhalation (dust and vapours). Site end-user		Medium Acute health risk	Unlikely Due to the nature of the Site having undergone minimal development over time the presence of made ground is considered unlikely	Moderate/ Low	
 Made Ground and contamination associated with: Buildings on Site Infilled pond Localised Fuel Spills from farming equipment during farming activities on the Site. 	Vertical migration through the superficial deposits (soils) May occur due physical processes including; capillary action and downwards into the natural deposits through infiltration, however, on Site deposits are likely to be cohesive in nature, reducing the potential for vertical migration.	Water Environment (groundwater) Unclassified Aquifer. No active/in use potable abstraction points located within the vicinity of the site, although former wells were noted on historical map extracts.	Mild Pollution of sensitive water resources	Low There is potential for the leaching of contamination from made ground arising from the site, however the superficial deposits on Site are likely to be cohesive reducing the risk of vertical migration. Wells are assumed to no longer be in use.	Low	Generic Quantitative Risk Assessment recommended as part of the ground investigation to confirm risk assessment
Horizontal migration over and through the superficial deposits (soils). Water Environment (surface water) Burn of Arrachnaras		Mild Pollution of sensitive water resources	Unlikely Unlikely considering the distance to the receptor and cohesive nature of superficial deposits.	Low		
Production of ground Vertical and horizontal migration generating gases from: Vertical and horizontal migration • Made ground from infilled pond in the centre of the Site and to the south-east of the Site. Vertical and horizontal migration		Medium Human health risk	Low With reference to BS8576:2013 (Ref.9), these sources are considered to have a moderate gassing potential.	Moderate	Ground Gas Monitoring Risk is considered Moderate due to unknown provenance of materials used to infill former ponds and close proximity to the development. However, as the superficial deposits are likely to be cohesive in nature, there is unlikely to be an active pathway on the Site for ground gas to migrate.	

4.0 Fieldworks

4.1 General

The intrusive ground investigation was undertaken by Curtins between 12th and 14th February 2024. A summary of the scope and rationale for the intrusive works undertaken is summarised in Table 3.1 below.

The ground investigation was designed by Curtins in relation to the proposed development plans, findings of the Phase 1 Report and in general accordance with current UK guidance, including LCRM (2), British Standard (BS) 10175 (3), BS5930:2020 (4) and Eurocode 7 (5).

Table 3.1 – Phase 2 Ground Investigation Scope and Rationale

Exploratory Hole Type	Exploratory Hole Ref.	Exploratory Hole Depth (m bgl)	Rationale
5 No. Hydraulic- percussive boreholes 1 No. Cable- percussive borehole	CP01 CP02 CP03 CP04 CP05 CP06 (cable- percussive)	1.40 1.60 1.45 1.55 2.30 1.10	 To determine ground conditions and potential foundation design. To confirm geotechnical parameters. To collect soil and groundwater samples (if available) for laboratory analysis. To determine groundwater depths/ levels.
24 No. Machine- excavated Trial Pits	TP01 TP02 TP03 TP04 TP05 TP06 TP07 TP08 TP09 TP10 TP10 TP11 TP12 SA01 TP14	1.20 0.90 1.10 1.00 0.80 1.60 0.80 1.10 1.60 0.80 0.80 1.50 1.60 0.40	 To mass characterize shallow ground conditions. Target potential areas of contamination. Obtain bulk geotechnical samples for earthworks laboratory testing. Perform infiltration tests for potential soakaway design.

Phase 2 Ground Investigation Report

Exploratory Hole Type	Exploratory Hole Ref.	Exploratory Hole Depth (m bgl)	Rationale
	TP15	1.20	
	TP16	1.30	
	TP17	1.70	
	TP18	1.00	
	TP19	2.50	
	TP20	1.60	
	TP21	1.00	
	TP22	1.60	
	TP23	1.50	
	TP24	0.80	

Curtins Exploratory Hole Location drawing (085444-CUR-00-XX-DR-GE-0001), records the locations of all exploratory hole locations a copy of which is contained within Appendix A.

4.2 Soil Logging and Sampling

Exploratory hole arisings were logged on site by a suitably qualified Curtins engineer in accordance with the requirements of BS5930:2020 (4). Copies of the exploratory hole logs are provided in Appendix B, with ground conditions presented in Section 5.1.

Representative soil samples were selected for laboratory geochemical and geotechnical analysis, based on field observations and to provide a characterisation of the strata encountered. The samples were placed in laboratory provided containers and stored in cool boxes prior to being transported to the nominated laboratory under the laboratory's chain of custody documentation. The laboratory selected by Curtins for chemical analysis was DETS Ltd and geotechnical analysis was MATtest Ltd.

4.3 Post Investigation Monitoring

An initial programme of three gas and groundwater monitoring visits were proposed in order determine the underlying gas and groundwater regime for the development site. The three return monitoring visits have been undertaken between the 13th March and 09th April 2024.

5.0 In-Situ & Laboratory Testing

5.1 Environmental Chemical Testing

A programme of environmental chemistry testing was scheduled, with analytical suites developed reflecting the preliminary CSM in Section 3.0 and observations made during the ground investigation.

Given the potential for site wide source of contamination the sampling positions were generally located in a semi targeted array to give an adequate and representative coverage of the site accounting for the historical site use and the immediate environmental setting, along with targeting areas of the proposed development.

5.1.1 Soil Analysis

Soil samples were taken from the topsoil across the site and tested for the suite listed in Table 5.1.1

The nature and type of soil contamination potentially present on the site was considered to include, amongst others; ash, hydrocarbons (e.g. fuel oils), heavy metals and asbestos, the extent of which is captured by the broad environmental testing suite detailed in Table 5.1.1. Copies of the environmental chemistry testing certificates can be referred to in Appendix C of this report.

Analysis	Limit of Detection (LOD)
Asbestos Screen	N/A
pH	N/A
Organic Matter	0.1%
Arsenic	1 mg/kg
Boron (water soluble)	0.2 mg/kg
Cadmium	0.1 mg/kg
Chromium	0.15 mg/kg
Chromium VI	1 mg/kg
Copper	0.2 mg/kg
Lead	0.3 mg/kg
Mercury	0.05 mg/kg
Nickel	1 mg/kg
Selenium	0.5 mg/kg
Zinc	1 mg/kg
TPH (Aro/Ali C5-C35) inc BTEX	0.01 to 10 mg/kg
PAH (speciated)	<0.05 to <0.1 mg/kg
Phenols (total)	<0.1 mg/kg
Cyanide (total)	0.1 mg/kg
Sulphate (SO ₄)	<1.25 mg/l

Table 5.1.1 – Environmental Chemistry Analysis Suite: Soils

5.2 Geotechnical Testing

Phase 2 Ground Investigation Report

Soil samples taken during the ground investigation works were prepared in accordance with BS1377: Part 1:2016. The following geotechnical in-situ and laboratory testing has been undertaken as presented in Table 5.2. The results of the testing are discussed further in Section 6.0 and presented in Appendix C.

Table 1.2 – Geotechnical Testing Soils

Test Type	Quantity	Standard		
	In-Situ Testi	ing		
Standard Penetration Testing	6	BS5930:2015, Clause 41		
In-Situ CBR (by DCP)	2	CS 229		
	Laboratory Te	sting		
Particle Size Distribution (wet sieve)	Distribution (wet sieve) 14			
Water Content	15			
Bulk Density	5			
Particle Density	5	BS 1377-2:2022		
CBR	3			
Dry Density	4			
Water Content/ Dry Density Relationship	9			

5.3 Infiltration Testing

Infiltration testing in accordance with BRE365 was undertaken at one location (SA01) at the site.

The purpose of the test was to determine the infiltration rate of the shallow soils, to determine if soakaway type drainage is likely to be suitable at the site.

SA01 was excavated to a depth of 1.60m bgl (171.39m AOD). The ground conditions comprised Topsoil (200mm thick) underlain by very gravelly clayey SAND to 1.30m bgl (171.69m AOD). Mudstone was recorded at 1.30m bgl to the base of the pit at 1.60m bgl.

The pit was filled with water to a depth of 0.62m bgl and during a period of 90 minutes a 5mm drop in water level was observed. The soakaway test was unsuccessful due to the 75% and 25% drop in water levels being unachieved.

6.0 Ground Conditions

6.1 Encountered Ground Conditions

The following section discusses the ground conditions determined from the ground investigation and laboratory testing described in Section 5.1 with detailed information presented on the exploratory hole logs in Appendix B.

Where necessary, determination of characteristic parameters has been based on a cautious estimate of results derived from laboratory, published correlations and field tests, complemented with engineering judgement and consideration of the relevant limit state. The parameters are not considered to be absolute and should be referenced with the specific strata text in this section and reviewed when considering a specific area of the site. The below figures should be referenced accordingly in relation to the field and laboratory testing results.

Stratum	Depth to to	p of strata	Thickr	ness (m)	General Description
	m BGL	m AOD	Min	Max	
Topsoil	GL	168.35 – 192.80	0.10	0.60	Dark brown very gravelly silty sand with very fine rootlets.
Hummock Glacial Deposits	0.10	168.15 – 192.7	0.25 (CP01)	1.95 (CP05)	Light brown very gravelly clayey SAND with high cobble content. Cobbles of mudstone and sandstone.
Inshes Flagstone Formation	0.20	166.85 - 191.50	0.10*	0.45*	Sandstone or Mudstone

Table 6.1 – Summar	/ of	Ground	Conditions	Encountered
	, 01	Ground	Contaitions	LINCOUNTERED

Notes - *Total thickness not proven (Base of unit not encountered).

6.1.1 Topsoil

Ground level within all exploratory hole locations across the site comprised topsoil material consisting of a dark brown very gravelly silty sand with very fine rootlets. Topsoil thickness was variable from 0.10m in multiple locations to 0.60m (TP19) in the south-west of the site.

6.1.2 Superficial – Hummock Glacial Deposits

Superficial Hummock Glacial Deposits were encountered beneath topsoil in all exploratory hole locations. Typically, superficial deposits were encountered as a light brown or grey, very gravelly clayey fine to coarse subangular SAND with high cobble content. Cobbles were subangular to angular of mudstone and sandstone. Thickness was variable between 0.25m (CP01) and 1.95m (CP05), both within the south of the site, indicative of a layer of highly variable

Phase 2 Ground Investigation Report

Curtins

thickness. TP19 also encountered a deposit of soft grey sandy silty clay between 0.60 and 2.00m BGL above mudstone bedrock, this clay is regarded as the weathering product of the mudstone.

Classification Testing

Fourteen particle size distribution tests (PSD) were undertaken on samples of Hummocky Glacial Deposits. The results of these tests are presented in Appendix D. The results suggest a predominantly granular material (sand/gravel) with a fines content ranging between 2 – 14%.

One SPT carried out at 1.20 m depth achieved full penetration which recorded an uncorrected 'N' value of 37 which is indicative of a dense granular soil.

Figure 6.12 shows how the angle of shearing resistance for the granular Hummock Glacial Deposits has been evaluated, increasing a base value of 36° based on Peck, Hanson and Thornburn and uniformity coefficients >6. A conservative angle of shearing resistance of 36° is appropriate based on Figure 6.12 below for a subangular and evenly graded soil.

Soil property	Determined from	Classification	Parameter, ^{D)}
Angularity of particles ^{A)}	Visual description of soil	Rounded to well-rounded	$\varphi'_{\rm ang} = 0^{\circ}$
		Sub-angular to angular	$\varphi'_{ang} = 2^{\circ}$
		Very angular to angular	$\varphi'_{ang} = 4^{\circ}$
Uniformity coefficient, C _u . ^{B)}	Soil grading	$C_{U} < 2$ (evenly graded)	$\varphi'_{PSD} = 0^{\circ}$
		$2 \le C_{\rm U} < 6$ (evenly graded)	$\varphi'_{PSD} = 2^{\circ}$
		C _U ≥6 (medium to multi graded)	$\varphi'_{\rm PSD} = 4^{\circ}$
		High C _u (gap graded), with C _u of fines < 2 ^{E)}	$\varphi'_{\rm PSD} = 0^{\circ}$
		High C_{U} (gap graded), with $2 \le C_{\text{U}}$ of fines < 6 ^{E)}	$\varphi'_{\rm PSD} = 2^{\circ}$
Density index, <i>l</i> _D , ^{C)}	Standard penetration test	$l_{\rm D} = 0\%$	$\varphi'_{\rm dil} = 0^{\circ}$
	blow count, corrected	$l_{\rm d} = 25\%$	$\varphi'_{\rm dil} = 0^{\circ}$
	for energy rating and	$l_{\rm D} = 50\%$	$\varphi'_{\rm dil} = 3^{\circ}$
	overburden pressure (N ₁) ₆₀	$l_{\rm D} = 75\%$	$\varphi'_{\rm dil} = 6^{\circ}$
		$l_{\rm D} = 100\%$	$\varphi'_{\rm dil} = 9^{\circ}$
A) Terms for defining part	ticle shape can be found in B	S EN ISO 14688-1.	
^{B)} The uniformity coeffici	ent C _u is defined in BS EN IS	0 14688-2.	
[©] The density index ID is	defined in BS EN ISO 14688 g. Standard Penetration Test	8-2. Density terms may be e	
	opriate for siliceous sands ar -siliceous sands, see <i>The stre</i>		
^{E)} "Fines" refers to that fr	action of the soil whose par	ticle size is less than 0.063 1	nm.

Figure 6.12: Excerpt from BS8004:2015+2020, Table 1

085444 Knocknagael, Inverness Phase 2 Ground Investigation Report

Curtins

Unit Weight

Eight bulk/dry density results are available for the Hummock Glacial Deposits. The results range between 1.72 - 2.55Mg/m3 (bulk density) and 1.92 - 2.16Mg/m3 dry density.

Based on the average bulk density of 20.9Mg/m3, a unit weight of 20kN/m3 is considered to be appropriate, which is also in agreement with guidance in BS8002 for a granular soil above and below the groundwater table.

Earthworks Testing

The Specification for Highways Works (Volume 1, Series 600 Earthworks) classifies a material with >15% fines (<63µm) as a cohesive material and material with <15% fines as a granular material.

Subject to the removal of oversize material (>300mm) thirteen of the fourteen PSD tests results classify as either a Class 1 or Class 2 acceptable earthworks material.

Four dry density/ moisture content relationship tests were undertaken on samples of granular Hummock Glacial Deposits. Maximum dry density of the Hummock Glacial Deposits ranged from 1.94Mg/m³ to 2.08Mg/m³ with an average value of 2.03Mg/m³. Optimum moisture content are variable between 8.3% and 12.7% with an average of 9.39%. The as-received moisture contents were recorded between 7.5% and 19.7%, with an average value of 12.09% recorded, this value is above the optimum moisture content value and characterises the in-situ soils as wet.

6.1.3 Bedrock – Inshes Flagstone Formation

Bedrock of the Inshes Flagstone Formation was present beneath superficial deposits in all locations and continued until maximum exploratory location depths of 2.30m bgl (186.38m AOD) were reached, whereby refusals were encountered due to the hard nature of the bedrock. Bedrock was typically characterised as reddish-purple SANDSTONE or MUDSTONE, often initially weathered at shallow depths. Extremely weak mudstone was typically encountered in the north-west of the site, whereas sandstone was typically encountered in the south-east.

Classification Testing

Five SPTs were carried out on the upper boundary of the Inshes Flagstone Formation, with all SPTs reaching a refusal SPT 'N' value of 50.

A conservative angle of shearing resistance of 35° to 41° is considered to be appropriate based on published guidance for a hard sedimentary rock and an SPT refusal.

Unit Weight

A unit weight of 19kN/m3 is considered to be appropriate, based on guidance in BS8002 for a saturated sedimentary rock.

6.2 Visual and Olfactory Indicators of Contamination

No visual or olfactory indicators of gross or mobile phase contamination were encountered within the topsoil or underlying natural soils during the ground investigation.

6.3 Obstructions Encountered

No unexpected obstructions were encountered within any exploratory hole location throughout the duration of the ground investigations. All exploratory locations were terminated prior to the target depth due to the presence of bedrock

Hummock Glacial Deposits may contain significant amounts of cobbles and boulders, although excavation remains feasible throughout the unit. Bedrock of the Inshes Flagstone Formation is weathered within first 150mm bgl from the top of the unit, competency of the unit increases beyond this with depth

Whilst considered unlikely, the presence of further obstructions not identified during the ground investigation cannot be discounted.

6.4 Groundwater

Three groundwater strikes were encountered during the investigation, between 1.00 and 1.20m bgl (177.00m to 179.99m AOD) within CP01, CP02 and CP04. These strikes are thought to be representative of 'perched groundwater' between superficial and bedrock strata.

The return monitoring visits recorded groundwater within one location, CP04 with levels ranging between damp and 1.16m bgl, as shown Table 6.6 below.

Exploratory	During Gr	ound Investigation	Post Investigation Monitored Groundwater Levels					
Hole Location Ref.	Seepage	Installation Strata	Monitored Depth (m bgl/m AOD)					
Rei.	Depth (m bgl/ m AOD)	installation Strata	13/03/24	27/03/24	09/04/24			
CP01	1,00		DAMP	DAMP	DAMP			
CP02	1.20		DAMP	DAMP	DAMP			
CP03	N/A	Hummock Glacial Deposits	DAMP	DAMP	DAMP			
CP04	1.00		1.15	1.16	DAMP			
CP05	N/A		DAMP	DAMP	DAMP			

Table 6.6 – Summary of Groundwater Seepages and Return Groundwater Levels

Phase 2 Ground Investigation Report

Exploratory	During Gr	ound Investigation	Post Investigation Monitored Groundwater Levels					
Hole Location	Hole	Installation Strata	Monitored Depth (m bgl/m AOD)					
Rei.	bgl/ m AOD)	Installation Strata	13/03/24	27/03/24	09/04/24			
CP06	N/A		DAMP	DAMP	DAMP			

7.0 Ground and Groundwater Contamination Risk Assessment

This section of the report includes the assessment of the potential solid contamination, liquid, and gas, identified on the subject site which may present a risk to the potential end users, associated utilities, and the wider environment.

In guidance published by the Environment Agency, the risk to human health or water environment is determined through an assessment of contaminant linkages between a source of contamination (within the ground or groundwater either on or off-site) and a sensitive receptor such as end users of the site, building materials, edible plants grown in gardens or groundwater abstracted for drinking. This is termed a source-pathway-receptor relationship. The same model is applied to the assessment of risk arising from ground gases as detailed within BS8576:2013 (7).

These models have a common approach, which is one of a tiered assessment. At each stage of the assessment, further detail can be applied to the conceptual site model to provide a detailed interpretation on a site-by-site basis. As part of the planning process, this approach is adopted in order to establish either if the site is 'suitable for use' or whether additional work or else remedial work is required in order for the site to be deemed so.

The sub-sections hereafter therefore incorporate the first tier (Tier 1) of this approach, otherwise referred to as the Generic Quantitative Risk Assessment (GQRA). The GQRA builds on the qualitative risk assessment presented in Section 3.0, in conjunction with observations made during the ground investigation and is based solely on the results of the chemical testing data obtained as part of the recent ground investigation.

The following sections present more detail on the risk assessment methodology rationale for the main receptors.

7.1 Human Health GQRA

Detailed guidance on human health risk assessment is available within several documents, published by both the Environment Agency and Defra. Guidance includes Contaminated Land Exposure Assessment (CLEA) v1.071 model Report SC050021/SR2: Human Health Toxicological Assessment of Contaminants in Soil and Report SC059921/SR3: Updated Technical Background to the CLEA Model (8).

A generic quantitative risk assessment (GQRA) has been carried out for the Potential Contaminant Linkages (PCLs) investigated by screening soil contamination data against relevant Generic Assessment Criteria (GAC) where available, including:

i) Soil Guideline Values (SGVs): These have been published by the Environment Agency and are trigger values for screening out low risk areas of land contamination. SGVs give an indication of representative average concentrations of chemicals in soil, below which long-term health risks are likely to be minimal. SGVs have been published for several contaminants including arsenic, cadmium, mercury, nickel, selenium, BTEX, phenols and dioxins, furans and dioxin-like PCB substances for land uses including residential, allotments and commercial settings. The SGVs have been developed for a sandy loam soil with 2.5% soil organic matter (SOM) content;

- ii) Supplementary Screening Values (SSVs): In addition to the SGVs developed by the EA, other third-party organisations have derived SSVs for a wider range of contaminants and land uses using the CLEA Model. Curtins have adopted these numbers where applicable, including those developed by Atkins AtriskSoil[™], the LQM/CIEH Suitable for Use Levels (S4UL) and EIC/AGS/CL:AIRE published thresholds;
- iii) Category 4 Screening Levels (C4SLs): In March 2014 Defra published C4SLs for arsenic, benzene, benzo(a)pyrene, cadmium, hexavalent chromium, and lead. These values were derived to support the revised Part 2A Statutory Guidance issued in 2012 in which four categories of contaminated land are included, ranging from Category 1 (significant/high risk) to Category 4 (low risk). C4SLs are not representative of significant possibility of significant harm (SPoSH) and are low risk levels. Therefore, where the C4SLs are not exceeded, land can be demonstrated to be in Category 4 and cannot be determined as contaminated land.

The available development plans provided by the client show the Site is anticipated to comprise the construction of battery energy storage units with associated site access and infrastructure.

Given the low-sensitivity nature of the end usage of the proposed development, this GQRA initially considered the following land use scenario for the development as part of a robust conservative assessment:

Commercial

Details of the GACs adopted for the GQRA are provided in Appendix D.

7.1.1 Soils

As part of the investigation, a total of fourteen environmental samples were submitted for environmental testing based on a suite presented in Table 5. The distribution of samples and quantity of sampling was considered sufficient for the development site.

As discussed within the previous section, comparison of the soil analysis results has been undertaken against conservative Generic Assessment Criteria (GAC) for **Commercial end use**.

Soil organic matter (SOM) has a strong bearing on the availability of potential contaminants and therefore influences the Tier 1 thresholds. The SOM typically ranged from 0.2% to 7.1%, with an average of 1.9%. As such, as part of a conservative assessment, the comparison has been made against GACs developed for a sandy soil with a SOM of 2.5%. The results of the environmental testing are appended in Appendix C. Copies of the adopted Tier 1 thresholds are contained within Appendix D.

With respect to the adopted conservative screening criteria for **Commercial end usage**, the results of the screening did not identify any exceedances within samples submitted for chemical analysis. Consequently, on-site shallow soils were considered unlikely to present a risk to future site users.

7.1.2 Asbestos

A total of fourteen samples were submitted to the laboratory for an asbestos presence screen. The testing concluded that asbestos was not positively identified in any of the samples submitted for laboratory testing.

7.1.3 Groundwater Derived Vapours

Three shallow groundwater seepages were recorded on-site as part of the ground investigation. However, as previously discussed, no gross or mobile phase contamination was encountered within the soils during the ground investigation. With this borne in mind, groundwater-derived vapours were unlikely to present a risk to future site users.

7.2 Water Environment – GQRA

Due to the lack of surface water features both on and near the site (with the exception of a field that drains northward into the Essich burn, located 50 meters to the northwest) and the absence of groundwater detected during monitoring visits, the risk to the water environment was considered to be *Low*. Additionally, no significant sources of mobile contamination were found on the site.

With reference to the foregoing commentary, the risk to water environments was assessed as Low. Therefore, no requirement for further action in terms of risk to controlled waters was considered necessary.

7.3 Ground Gas – GQRA

The assessment of risk presented by ground gases is assessed with reference to guidance published by CIRIA Assessing Risks Posed by Hazardous Ground Gases to Buildings, C665, (9) BSI Publication code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings BS8485:2019 (10) and BS8576 (7).

The gas risk assessment adopts a tiered approach. In the first instance this involves a re-evaluation of the Conceptual Site Model described within the Phase 1 Preliminary Risk Assessment (desk study) and thereafter validating this conceptual model with the ground gas data, the semi-quantitative risk assessment.

7.3.1 Asphyxiant, Noxious and Explosive Gases

The Preliminary Conceptual Site Model (PCSM) presented within Section 3.0 noted the potential for gases to arise from uncontrolled deposition of Made Ground on-site. The ground investigation did not encounter any Made Ground across the site. The remainder of the site comprised topsoil over natural soils with no obvious organic or putrescible material. With reference to BS8576, Figure 6; the development site would be considered to have a 'very low' gassing potential.

085444 Knocknagael, Inverness Phase 2 Ground Investigation Report

Curtins

Consequently, ground gas monitoring would not necessarily be required to further determine risk. However, to establish a baseline gas regime and validate the qualitative assessment of ground gas risk, six dual-purpose gas and groundwater monitoring installations were constructed within boreholes as detailed in Table 4.3 within Section 4.3.

A programme of three gas and groundwater monitoring visits was proposed with visits undertaken on the 13th March, 27th March, and the 9th April 2024. Gas monitoring to date has been undertaken during stable atmospheric pressures with barometric pressure ranging from 986 mb to 1004 mb. A summary of the soil gas monitoring results is presented in Table 7.3.1 below, with the monitoring results and log sheets presented in Appendix B.

Location	CO ₂ Range (% ^{vol/_{vol})}	CH4 Range (% ^{vol/_{vol})}	O ₂ (% ^{vol/} vol)	Max Flow Rate (I/hr)	Steady State Flow Rate (I/hr)
CP01	0.2 - 0.3	<0.1	20.4	<0.1	<0.1
CP02	0.1	<0.1	20.6	<0.1	<0.1
CP03	0.1 – 0.2	<0.1	20.5	<0.1	<0.1
CP04	0.1 – 0.2	<0.1	20.9	<0.1	<0.1
CP05	0.1	<0.1	21.1	<0.1	<0.1
CP06	0.1	<0.1	20.5	<0.1	<0.1

Table 7.3.1	Summary of Soil Gas	Monitoring Results
-------------	---------------------	--------------------

Hydrogen sulphide and carbon monoxide were not detected during any of the ground gas monitoring visits.

Maximum concentrations of carbon dioxide and methane were recorded at 0.3% ^{vol}/_{vol} and <0.1% ^{vol}/_{vol} respectively. The ground gas concentrations are consistent with natural soils. As previously detailed, the above is considered to comprise 'very low' gassing potential in accordance with BS8576 Figure 6.

Considering both a 'worst credible scenario' (maximum 'absolute' flow rate, maximum gas concentration within a single borehole location) and 'worst possible scenario' (maximum 'absolute' flow rate, maximum gas concentration across all borehole locations) the Hazardous Gas Flow Rates (Q_{hg}) for the site are evaluated as 0.0004 (carbon dioxide) and <0.0001 (methane).

In this site situation, the calculated Hazardous Gas Flow Rates (Q_{hg}) are considered to be reflective of a conservative assessment of Gas Screening Values (GSV) with generally negligible flow rates and non-detectable concentrations of methane recorded.

With reference to CIRIA C665 (9), the above calculated GSV, indicate a Characteristic Situation (CS) 1 in regard to ground risk.

7.4 Radon Gas

The BGS Radon Mapping confirms the site is situated in a lower probability radon area where less than 1% of homes are estimated to be at or above the action level. Therefore, radon protective measures are not necessary in the construction of new dwellings or extensions.

Where the new development incorporates a basement the advice of a specialist Radon assessor must be obtained

8.0 Revised Conceptual Site Model

The preliminary conceptual site model (PCSM) presented and discussed in Section 3.0 of this report has been revised following the GQRA in Section 7.0 above and this revised Conceptual Site Model (CSM) is presented in the table overleaf.

The CSM details the source-pathway-receptor linkages or potential contaminant linkages (PCL) that have been identified for the site. The GQRA details the associated level of risk relating to these potential contaminant linkages.

The CSM concerns risk to human health, Water and Environment and follows the framework outlined within CIRIA C552 which is summarised within Appendix E.

The 'risk rating' within the CSM refers to the risk that the source, pathway, receptor linkage or PCL is complete. Unless specifically stated it does not necessarily refer to an immediate risk and is intended to be used as a tool to assess the necessity for further assessment/investigation.

Under current health and safety legislation, employers are required to carry out their own appropriate risk assessments and mitigation to protect themselves and their employees, other human receptors and the environment from potential contamination. Such risks must be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015 which require that potential risks to human health and the environment from construction activities are appropriately identified and all necessary steps taken to eliminate/manage that risk. It has been assumed that any future construction works on site will be undertaken in compliance with these requirements and therefore construction workers involved in the development works at the site have been discounted as a human receptor in the conceptual site model. Phase 2 Ground Investigation Report

Curtins

Qualitative Risk Assessment

Generic Quantitative Risk Assessment

• The table below represents the second stage in the land quality risk assessment process: The Quantitative Risk Assessment. • In order for a development site to be deemed 'suitable for use', the level of risk needs to be brought down to acceptable levels, i.e., low to negligible risk. The purpose of each stage of risk assessment is ultimately to establish, if there is a requirement for additional levels of assessment to be made in order to have sufficient confidence to support a risk characterisation or management decision, e.g. remedial action.

	Conceptual Site Model		Qualitative Risk Assessment					
Source	Pathway(s)	Receptor(s)	Consequence	Likelihood of Occurrence	Risk Rating	Recommended Actions		
	Direct contact, ingestion, inhalation (dust and vapours).	Site end-user	Medium Acute health risk	Unlikely Made Ground was not encountered onsite. Samples of onsite shallow natural soils sent for chemical testing did not identify any chemical exceedances against commercial GACs. The areas of the historical wells were unable to be directly tested due to its archaeological significance. Sampling was undertaken in proximity to the areas, the results were consistent with the wider site, recording no exceedances against commercial GACs.	Low			
None	Vertical migration through the superficial deposits (soils) May occur due physical processes including; capillary action and downwards into the natural deposits through infiltration, however, on Site deposits are likely to be cohesive in nature, reducing the potential for vertical migration.	deposits (soils) beccur due physical processes including; capillary and downwards into the natural deposits through ation, however, on Site deposits are likely to be sive in nature, reducing the potential for vertical bis in the potential for vertical deposits (soils) Water Environment (groundwater) Unclassified Aquifer. No active/in use potable abstraction points located within the vicinity of the site, although former wells were noted on historical map extracts.		Low Made Ground was not encountered on site. Four groundwater strikes were recorded during the investigation, these were characterised as perched water and not representative of a sensitive resource. Samples of on site shallow natural soils sent for chemical testing did not identify any chemical exceedances when compared against commercial GACs, in addition no visual or olfactory contamination was encountered on site. Consequently, the risk to the water environment was deemed as low.	Low	No further action required		
	Horizontal migration over and through the superficial deposits (soils).	Water Environment (surface water) Burn of Arrachnaras	Mild Pollution of sensitive water resources	However, as the infilled pond has not been investigated, it is likely that "pond deposits" may have built up, which may be organic-rich. The potential for ground-made ground still exists in the investigated areas, and it could represent a gas source where construction is undertaken on top of the near-made ground, especially since gas pathways have been identified. Should the made ground be excavated, it would eliminate the risk, provided the material is effectively managed and its organic content evaluated and, if found to be gas-producing - mitigated. It should be considered that construction is not likely to be undertaken in the area of the infilled pond due to it being within an area of archaeological interest.	Low			

Phase 2 Ground Investigation Report

Curtins

Production of ground gases from: • Made ground from infilled pond in the centre of the Site and to the south- east of the Site.	Vertical and horizontal migration through existing service corridors and the underlying superficial deposits.	Site end-user	Medium Human health risk	Low The results of the ground investigation determined no Made Ground on site. With reference to BS8576, Figure 6 such material would have 'very low' gassing potential and unlikely to contribute a site-wide ground gas risk. Consequently, ground gas protection measures are not required on- site.	Low	No further action required
--	---	---------------	------------------------------------	--	-----	----------------------------------

In conclusion, the previous Revised Risk Assessment indicates a **Low** risk to human health, water environment, and ground gas from on and off-site sources.

9.0 Preliminary Geotechnical Assessment

The recommendations provided within this section are based on a review of the recent records of ground conditions encountered across the Site, along with the Proposed Development. This section will assess the relevant geotechnical issues for the Proposed Development. The Proposed Development plan is contained within Appendix A. The engineering assessment considers foundation design, bearing capacity, settlement, excavations, earthworks, floor slab, drainage, and pavement design for the site. Structural details and loadings have not yet been provided. It should be noted that detail may change in the development of designs beyond the issue of this Phase 2 Report and the construction-stage designer should satisfy themselves regarding the adequacy of their design and proposed approach to construction by reference to the ongoing project design proposals, the ground investigation information, and their own examination of the site.

9.1 Geotechnical Considerations

9.1.1 Earthworks

Prior to the Site Investigation, a detailed cut and fill for the Site had not been designed and the proposed layout was noted as subject to change, however, at the time of writing, Curtins have been provided with a detailed cut and fill design by the client. Drawing 085444-CUR-XX-XX-D-GE-00004 Cut & Fill Site Layout is included in Appendix A. Proposed ground levels vary across the Site at 186.000m AOD in the south east corner and 169.600m AOD in the north, therefore earthworks are required at the Site to achieve the proposed levels.

The Site is set out with three proposed platforms in the south east, the centre west and the north east with swales set out in the west and east and a SUDS pond in the north.

Topsoil is not considered to be an acceptable earthworks material, it is recommended that this is stripped and stockpiled onsite for re-use on proposed bunds.

Following a Topsoil strip, Engineered Fill is likely to be required across the development platforms to achieve the finished levels. The thickness of Engineered Fill is likely to be >2.0m across all three platforms.

Depending on the level of cut and location, cut materials are likely to comprise Hummock Glacial Deposits and/or weathered bedrock (Inshes Flagstone Formation – mudstone and sandstone). Where mudstone was encountered, it was described as weathered to extremely weak.

It is likely that the excavated material will classify as a Class 1 or Class 2 Acceptable Earthworks Fill (in accordance with Table 6/2 SHW Series 600) subject to oversize material >125mm being removed for a Class 2.

A summary of the grading results is provided in Table 9.1 together with the determined material classification (assuming oversize material removed).

085444 Knocknagael, Inverness Phase 2 Ground Investigation Report

Nine Dry Density/ Moisture Content Relationship tests were undertaken on samples of cohesive Hummocky Till Deposits using a 4.5kg rammer. The Maximum Dry Density (MDD) ranged between 1.83Mg/m3 and 2.03Mg/m3.

The test results suggest that the Hummocky Till Deposits are likely to achieve a 95% MDD compaction criteria and the as received moisture contents suggest that the material could be placed without any requirement for treatment i.e. lime modification.

It must be noted that these samples were taken directly from the ground and the moisture content may change if the material is excavated and stockpiled for a duration of time. It is recommended that samples are retested prior to placement to ensure that the moisture content is within the acceptable limits to achieve 95% compaction.

It is recommended that an Earthworks Specification is produced to ensure that the works are undertaken in accordance with the SHW Series 600, and that appropriate validation testing is undertaken to satisfy the local authority.

Sample	Depth	500	300	125	90	75	37. 5	28	20	14	10	6.3	5	3.3 5	2	1.1 8	600	300	150	63	Class
TP01	0.5	100	100	100	84	84	50	45	37	32	29	25	24	22	19	17	15	14	12	9	1A/1B
TP03	0.6	100	100	100	100	100	83	78	73	68	65	59	57	53	47	43	39	35	29	21	2C
TP08	0.5	100	100	100	86	80	60	53	47	41	37	33	32	29	26	24	21	20	17	13	1A/1B
TP10	0.5	100	100	100	88	88	64	60	54	41	36	33	31	28	25	23	21	19	17	14	1A/1B
TP11	0.5	100	100	100	100	91	77	70	60	51	45	38	37	33	29	26	23	21	18	13	1A/1B
TP12	1.0	100	100	100	100	100	86	74	69	60	56	53	51	48	45	43	40	38	33	27	2C
TP16	0.9	100	100	100	100	100	93	85	78	72	65	57	54	49	44	40	37	33	29	22	2C
TP19	1.0	100	100	100	100	100	93	88	81	74	69	61	58	50	43	39	35	32	28	22	2C
TP19	2.0	100	100	100	100	100	82	74	67	58	52	45	42	38	33	30	27	26	23	18	2C
TP20	1.0	100	100	100	100	100	73	66	58	52	47	40	37	32	27	24	21	19	16	13	1A/1B
TP21	0.5	100	100	100	100	100	83	76	65	62	55	54	51	45	38	33	29	27	23	17	2C
TP23	0.5	100	100	100	81	81	48	46	44	40	38	36	34	31	28	25	22	20	18	14	1A/1B
TP24	0.5	100	100	100	100	100	85	78	71	66	64	59	57	53	48	44	39	35	29	20	2C

Table 9.1: Summary of Grading Results and Classification

9.1.2 Excavations

Significant quantities of cobbles may be present within the Hummock Glacial Deposits which may present difficulties with excavation. Bedrock excavations is suitable for the initial 150mm from the top of the unit, excavations deeper into more competent bedrock may require heavier plant.

In accordance with Health and Safety Regulations, side support for safety purposes should be provided to all excavations which appear unstable and those more than 1.2m deep. Excavations are likely to be stable at suitable batters.

Noticeable amounts of standing water encountered within the excavations could result in weakening of the founding soils, whilst groundwater was not encountered in large quantities during the Intrusive works, there is still the potential for groundwater storage on the Site. As such, where encountered, the water should be

Phase 2 Ground Investigation Report

Curtins

removed facilitating suitable methods such as sump pumping. General advice on de-watering in accordance with CIRIA Report C750: Groundwater Control (13) should be taken into consideration. The chosen contractor should provide details on how they intend to ensure the safety and stability of proposed excavations.

9.1.3 Groundwater

Given the presence of seepages within the Hummock Glacial Deposits, perched groundwater cannot be discounted and may be present in shallow excavations. Where groundwater is encountered, de-watering measures such as sump pumping are likely to be suitable.

9.2 Foundation Design

The Proposed Development comprises a BESS with an average expected loading of 50kN/m² based upon Datasheets for equipment provided by Field and loading calculations undertaken by Curtins Structural Engineers. Loads of c. 120 tonnes are anticipated associated with the transformers. It should be noted that the Site layout and equipment for use on the Site is still subject to change, as such further assessment may be required if design changes any further.

Control Building

Where the control building is proposed it is likely that Engineered Fill < 1.0m will be required, and therefore shallow foundations are likely to be suitable, founding in the Hummocky Deposits at c. 168 - 169m AOD.

Presuming a strip foundation, 0.45m wide and 20m long, an allowable bearing capacity of 100kPa is likely to be achievable within the granular Hummocky Glacial Deposits, described as a dense granular deposits. Settlement < 25mm is estimated. This should be validated onsite by an experienced geotechnical engineer. It is important that the foundation is cast wholly on one material type (i.e. weathered bedrock or Hummocky Glacial Deposits) to prevent excessive differential settlement.

A ground bearing floor slab is likely to be suitable founding on the Engineered Fill. An Earthworks Specification is required to detail the strength criteria and validation testing requirements of the formation layer.

Transformers and Batteries

The transformers are likely to be formed on a raft foundation. Due to the variable thicknesses of Engineered Fill likely to be required to achieve finished levels and the heavy loads anticipated, a detailed settlement assessment is required to inform the compaction criteria and validation testing requirements for an Earthworks Specification.

Where shallow bedrock is present shallow foundations are likely to be suitable, founding on the weathered mudstone or sandstone encountered at depths ranging between 166.85 and 191.50m AOD.

Based on published literature (12) a conservative presumed allowable bearing capacity of 150kPa should be assume, a conservative bearing capacity from published literature in the absence of rock data and assumed an extremely weak rock.

085444 Knocknagael, Inverness Phase 2 Ground Investigation Report

0.01 - 0.04

<10 - 14

Should a raft solution be adopted, fill should be placed to an earthworks specification and a detailed settlement assessment should be undertaken to determine the material parameters required for the fill and to detail the compaction requirements, to ensure settlements are not excessive.

The engineering characteristics of any clayey and silty soils at shallow depth are particularly sensitive to changes in soil moisture content and will soften considerably when exposed to free water. It would therefore be prudent to program pavement construction for the dry summer months where possible. Where this is not possible, steps should be taken to protect construction activities in adverse weather, for example not placing any fill until compaction plant is on site to work it and excavating grips or temporary drainage ditches to collect run off and/ or groundwater during periods of particularly heavy rain.

9.3 Aggressive Ground Conditions

The classification of the site in terms of concrete in aggressive ground is based on the guidance provided in the Building Research Establishment (BRE) Special Digest 1 3rd Edition of 2017 (6). A summary of the results obtained during the ground investigation works are summarised in Table 6.7a. Table 6.7b summarises the classification, based on geology.

Stratum	Test Type	Range
	pН	6.5 – 7.8

Table 9.2a Summary of pH, sulphate and water soluble (2:1) sulphate testing

A total of four samples underwent water soluble sulphate and pH testing. Using BRE Special Digest 1, the Aggressive Chemical Environmental for Concrete (ACEC) classification has been derived from sulphate and pH values for each stratum. These are highlighted in Table 9.2b.

Sulphate as SO₄ (total) (%)

Sulphate aqueous extract as SO₄ (2:1) (mg/l)

Table 9.2b	Aggressive Chemical Environment for Concrete (ACEC) Site Classification
------------	---

Stratum	Design Sulphate Class	ACEC Class ⁽¹⁾
Hummock Glacial Deposits	DS-1	AC-1

9.4 Hardstanding Design

Hummock Glacial Deposits

CBR values are used to determine road pavement construction thicknesses. Twenty in-situ CBR tests were undertaken across the development site, and the test results ranged from 2.9% to >20%. Of the twenty results, only two recorded CBRs <5% (at depths of 0.00 and 0.15m bgl). Earthworks and final layout were not available

Phase 2 Ground Investigation Report

Curtins

at the time of fieldwork. It felt prudent to undertake CBRs in the location where the access road was most likely to go and then undertake laboratory CBRs at a depth where earthworks are likely.

It should be noted that these tests were undertaken before earthworks. The higher values are thought to be reflective of cobbles within the Hummock Glacial Deposits and/or encountering underlying bedrock and do not reflect a realistic CBR value post-cut and fill.

Laboratory CBR testing was undertaken on three soil samples retrieved from depths of 0.50m to 1.00m, with results ranging from 0.8% to 7.7% with an average CBR of 4.57%.

Taking into consideration the in-situ CBR tests (by DCP) and laboratory results, a conservation CBR value of 4.5% is recommended for preliminary designs. Further in-situ CBR testing should be undertaken at formation level where hardstanding is proposed to confirm the CBR value used in preliminary design. Curtins will also expand our commentary and offer further clarification on different soil/rock types and likley level changes across the site once additional CBR tests are completed.

9.5 Drainage

The poor infiltration is likely a result of the clayey nature of the Hummock Glacial Deposits and impermeable nature of the mudstone bedrock. Soakaway type drainage is therefore not recommended.

10.0 Conclusions

10.1 Geo-Environmental

A revised tabulated Conceptual Site Model has been derived following the findings of the Generic Quantitative Risk Assessment and is presented in Section 8.0.

The environmental chemistry soil results have been compared with the Generic Assessment Criteria (GAC) for soils with respect to human health against Commercial thresholds. The results of environmental testing did not record any exceedances of contaminants above the adopted GACs, nor the presence of asbestos.

The risk to water environments was considered Low.

A review of the ground gas risk highlights no ground gas protection measures are required for the site.

The BGS Radon Mapping confirms that the site in a low probability radon area where less than 1% of homes are estimated to be at or above the action level. Therefore, no radon protective measures are necessary in the construction of new dwellings or extensions.

Where the new development incorporates a basement the advice of a specialist Radon assessor must be obtained.

10.2 Geotechnical

It is anticipated that a cut and fill will be undertaken to achieve formation level. Depending on the level of cut and location, cut materials are likely to comprise Hummock Glacial Deposits and/or weathered bedrock (Inshes Flagstone Formation – mudstone and sandstone). It is likely that the material will classify as a Class 1 or Class 2 Acceptable Earthworks Fill subject to the removal of overside material (>300mm).

The proposed development comprises a BESS with a maximum expected loading of 50kN/m². Site layout is subject to change and as such foundation advice should be considered as preliminary and detailed foundation design should be confirmed once final Site layout is agreed. Initially, a conservative presumed allowable bearing capacity of 150kPa for the Inshes Rock Formation should be assumed, we have provided a conservative bearing capacity from published literature in the absence of rock data and assumed an extremely weak rock, however, the cut and fill design indicates that cut in some players is >4.0m. As such further intrusive works may be required to confirm rock quality and ripability, utilising rotary drilling for the retrieval of rock cores for point load testing and unconfined compression test.

Should a raft solution be adopted, fill should be placed to an earthworks specification and a detailed settlement assessment should be undertaken to determine the material parameters required for the fill and to detail the compaction requirements, to ensure settlements are not excessive.

085444 Knocknagael, Inverness

Phase 2 Ground Investigation Report

Curtins

It is anticipated that earthworks will be required during the enabling works and shallow excavations during the construction phase. Given the presence of seepages within the Hummock Glacial Deposits, perched groundwater cannot be discounted and may be present in shallow excavations.

A conservative CBR value of 4.5% is recommended for preliminary designs, based on in-situ and laboratory CBR testing.

Infiltration testing in accordance with BRE365 was undertaken at one location (SA01) at the site. The soakaway test was unsuccessful due to the 75% and 25% drop in water levels being unachieved. The poor infiltration is likely a result of the clayey nature of the Hummock Glacial Deposits and impermeable nature of the mudstone bedrock. Soakaway type drainage is therefore not recommended. Further soakaway testing could be undertaken in proposed SUDs locations in the north of the Site.

10.3 Recommendations

In light of the ground investigation undertaken to-date across the development site, the following recommendations are made:

- Should a raft solution be adopted, Engineered Fill (Site won superficial deposits) should be placed to an earthworks specification and a detailed settlement assessment should be undertaken to determine the material parameters.
- Earthworks should be completed to an Earthworks specification. Site won material is recommended to be regraded to remove oversized constituents (>300m) to fit a suitable earthworks classification.
- Additional CBR testing is required at formation level during earthworks.
- Further intrusive investigation on the Inshes Formation should be undertaken to establish rock quality as the earthworks cut is deeper than initially anticipated. Investigation can include rotary core drilling and/or deep trial pits utilizing increased tonnage excavator with tooth bucket to 4.0m bgl.
- It is recommended that no further **environmental** works are considered necessary and based on this information a remediation strategy is not considered necessary.

Curtins

11.0 References

1. Curtins. Knocknagael, Phase 1 Preliminary Risk Assessment (ref. 084743-CUR-XX-XX-T-GE-0001). March 2024.

2. Environment Agency (EA). Land Contamination Risk Management. April 2021.

3. British Standard Institution (BSI). Investigation of Potentially Contaminated Sites (report no. BS10175). 2011.

4. British Standards (BS). BS 5930, Code of practice for site investigations. 2020.

5. British Standards Institution. Eurocode 7: Geotechnical Design (report no. BS EN 1997. 2006.

6. BRE. BRE Special Digest 1 (SD1:2005), Concrete in aggresive ground, 3rd Edition. 2017.

7. BS8576 - Guidance on investigations for ground gas - Permanent gases and Volatile Organic Compounds (VOCs). British Standards. 2013.

8. Environment Agency. Updated Technical Background to the CLEA Model (SR3). January 2009.

9. CIRIA. Assessing Risks Posed by Hazardous Ground Gases to Buildings (report no. C665). 2007.

10. British Standards. British Standard 8485:2015+A1:2019 - Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings . 2015.

11. Works, Manuel of Contract Documents for Highway. Series 600 of the Specification for Highway Works (SHW). Accessed 2024.

12. Tomlinson, M.J. Foundation Design and Construction. 2020.

13. CIRIA. C750 Groundwater control - design and practice. 2016.

14. Environment Agency. Land Contamination Risk Management (LCRM). April 2021.

15. Public Health England. UK Radon Atlas, https://www.ukradon.org/. accessed February 2024.

16. Zetica. https://zeticauxo.com/downloads-and-resources/risk-maps/. accessed February 2024.

17. Environment Agency. *Historical Landfill Data, https://data.gov.uk/dataset/17edf94f-6de3-4034-b66b-004ebd0dd010/historic-landfill-sites.* accessed February 2024.

18. Environment Agency. Environment Agency Data, www.magic.defra.gov.uk. accessed February 2024.

19. British Geological Survey (BGS). BGS Opengeoscience,

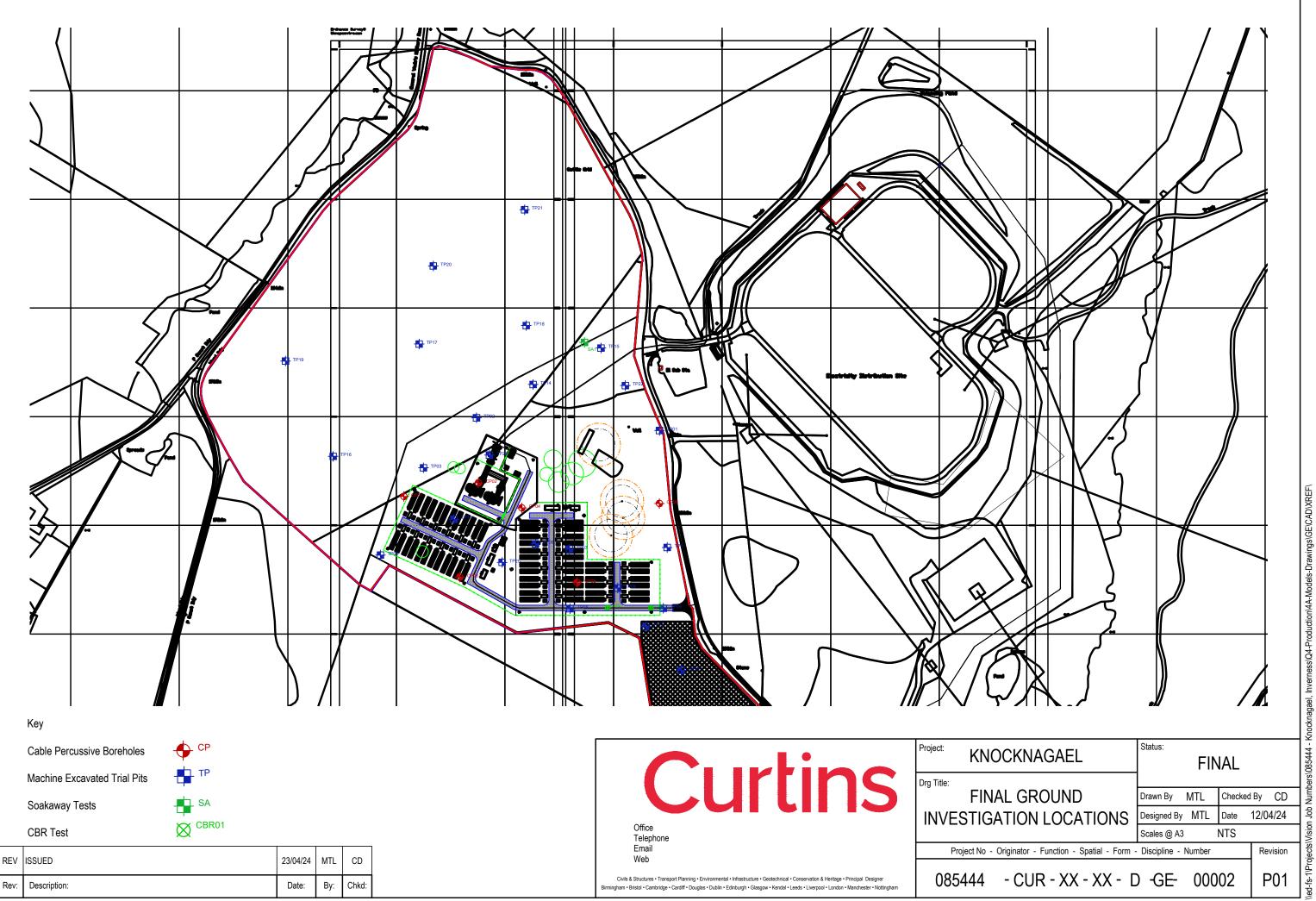
https://www.bgs.ac.uk/data/mapViewers/home.html. accessed February 2024.

20. British Geological Survey. BGS 1:50,000 Geological Mapping, Solid and Drift - Sheet No. 830 Inverness. 1997.

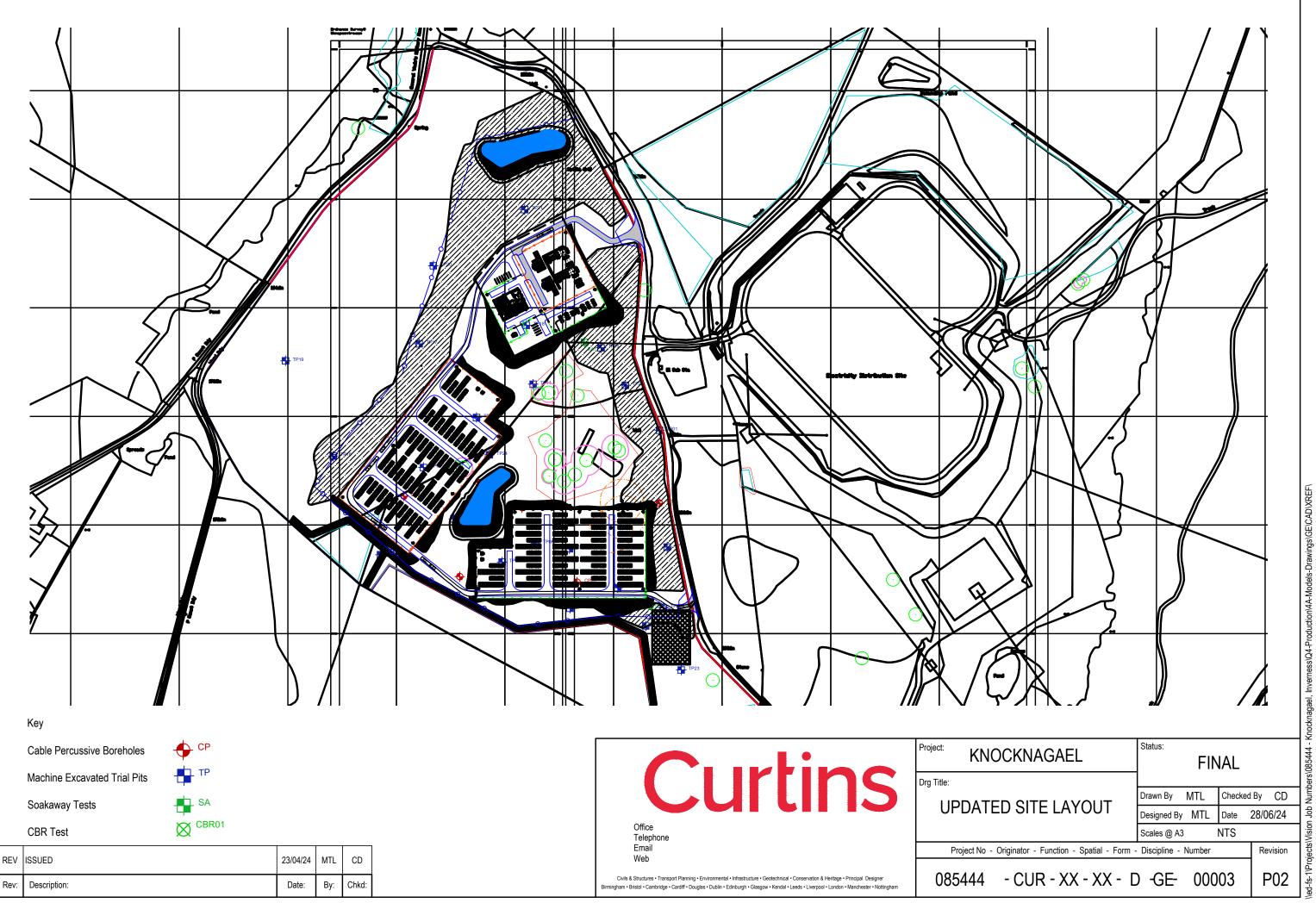
21. Environment Agency. Guidance on the classification and Assessment of Waste Technical Guidance WM3 Version 1. 2018.

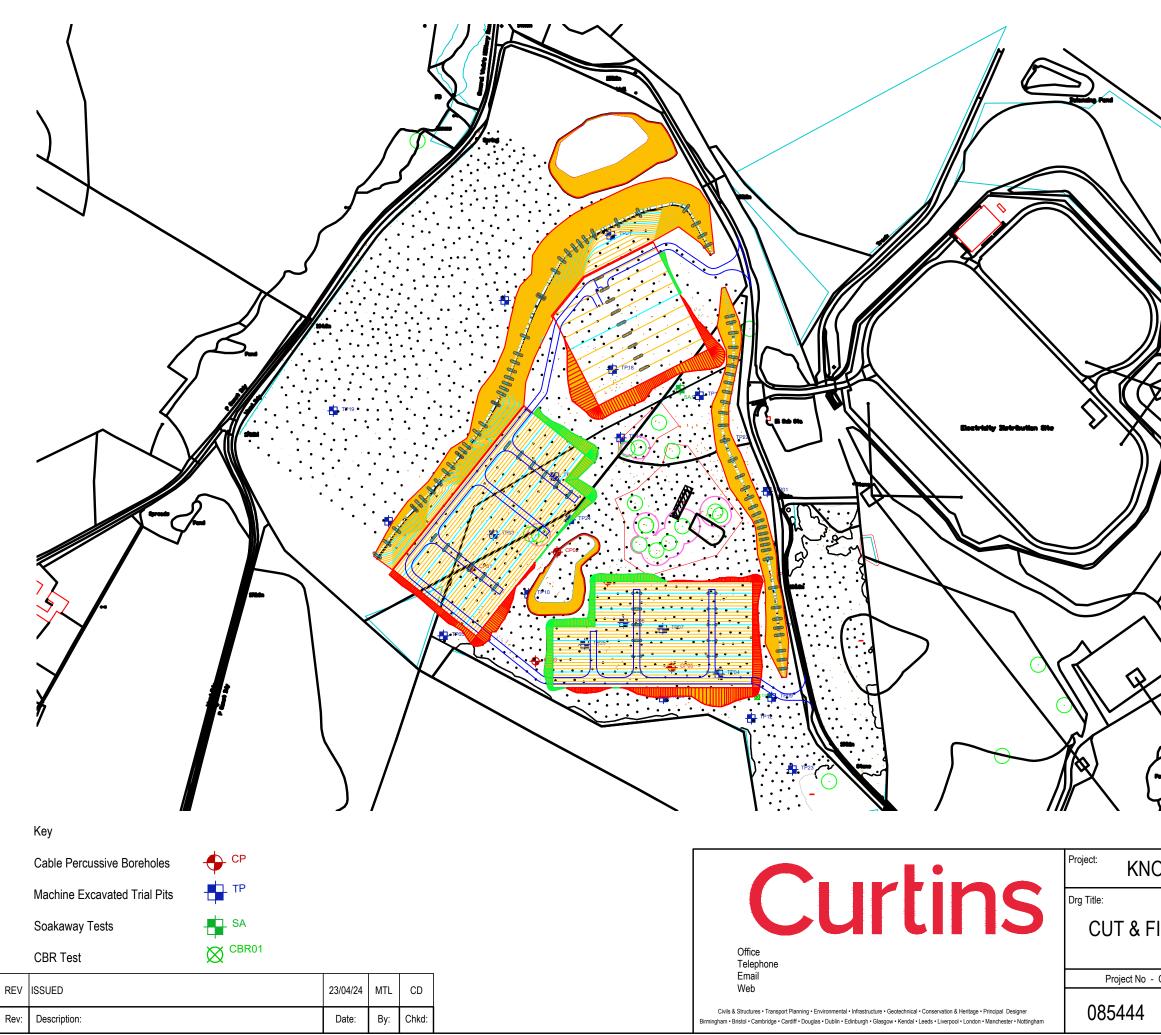
22. Assessing risks posed by hazardous ground gases to buildings (C665). Construction Industry Research and Information Association (CIRIA). 2007.

23. Handbook of Geotechnical Investigation and Design Tables, Burt Look, 2007.


Curtins

12.0 Appendices


- Appendix A Drawings
- Appendix B Supporting Information
- Appendix C Environmental Testing Results
- Appendix D Tier 1 Thresholds
- Appendix E Qualitative Risk Assessment Rationale


Appendix A - Drawings

ess\Q4-PI Inver ed-fs-1

ess/Q4-Pr Invern ed-fs-1

OCKNAGAEL	Status: FIN	IAL	
ILL SITE LAYOUT	-	Checked Date 2 NTS	24/06/24
Originator - Function - Spatial - Form		04	Revision P01

\led-fs-1\Projects\Vision Job Numbers\085444 - Knocknagael, Inverness\Q4-Production\4A-Models-Drawings\GE\CAD\XREF\

Appendix B – Supporting Information

								Trialpit No	о
						Tri	al Pit Log	SA01	
								Sheet 1 of	1
Projec Name	t . Knockna	gael, In	verness	Projec 08544			Co-ords: 264973.20 - 839068.40	Date 12/02/202	4
				08544	4		Level: 172.99 Dimensions	Scale	4
Locati	on: Invernes	S					(m):	1:20	
Client	: Field Ene	ergy					Depth 1.60	Logged	
			n Situ Testing				1.60	ML	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	TOPSOIL. Dark brown very gravelly silty sand v	vith very	
				0.20	172.79 171.69 171.39		TOPSOIL. Dark brown very gravelly silty sand v fine rootlets Light brown very gravelly clayey fine to coarse angular SAND with high cobble content. Cobble of mudstone. MUDSTONE End of pit at 1.60 m	sub is angular	
									-
									-
									_
									4 —
Rema Stabili		oundwa	ater Encountered. Pit ⁻	erminate	ed on roc	khead.		AGS	S

								Trialpit No
						Tri	al Pit Log	TP01
				Ducies	4 1 1 -		O	Sheet 1 of 1
Projeo Name	ct Knockna	agael, In	verness	Projec 08544			Co-ords: 265042.30 - 838987.30 Level: 181.72	Date 13/02/2024
Locati				100011	•		Dimensions	Scale
LUCAL		5					(m):	1:20
Client	: Field En	ergy					Depth 1.20	Logged ML
er (e	Sample	es and I	n Situ Testing	Depth	Level	Legend	Stratum Description	•
Water Strike	Depth	Туре	Results	(m)	(m)	Legend		
	0.10	ES					TOPSOIL. Dark brown very gravelly silty sand fine rootlets	with very
	0.50	BB		1.00	180.72 180.52		angular SAND with high cobble content. Cobble angular to angular of mudstone and sandstone Grey very gravelly clayey fine to coarse sub ar SAND with very high cobble content. Cobbles mudstone. MUDSTONE End of pit at 1.20 m	igular -
Rema	rks: No G	roundwa	ater Encountered. Pit To	erminate	d on roc	khead.		3
Stabili	ity:							AUD

								Trialpit No
						Tr	ial Pit Log	TP02
								Sheet 1 of 1
Projec Name	t . Knockna	agael, In	verness	Projec 08544			Co-ords: 264877.40 - 838990.90 Level: 176.19	Date 13/02/2024
<u> </u>				06544	4		Level: 176.19 Dimensions	Scale
Locati	on: Invernes	SS					(m):	1:20
Client:	: Field En	iergy					0.90	Logged ML
Water Strike		1	n Situ Testing	Depth (m)	Level (m)	Legend	d Stratum Description	
	0.50 0.50	Type BB ES	Results	0.20	175.99		TOPSOIL. Dark brown very gravelly silty sand very fine rootlets Light brown very gravelly clayey fine to coarse angular SAND with high cobble content. Cobble angular to angular of mudstone and sandstone. SANDSTONE End of pit at 0.90 m	sub
Rema Stabili		roundwa	ater Encountered. Pit	Terminate	⊥ ed on roc	⊥ khead.	I	AGS

								Trialpit No
						Tr	al Pit Log	TP03
								Sheet 1 of 1
Projeo Name	ct Knockna	agael, In	verness	Projec 08544			Co-ords: 264781.70 - 838954.70 Level: 176.34	Date 14/02/2024
<u> </u>				06544	4		Dimensions	Scale
Locat	ion: Invernes	SS					(m):	1:20
Client	:: Field En	ergy					Depth 1.00	Logged ML
50	Sampl	es and l	n Situ Testing	Danth	Laval			
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	
							TOPSOIL. Dark brown very gravelly silty sand fine rootlets	with very
	0.20	ES BB		0.15	176.19		Light brown very gravelly clayey fine to coarse angular SAND with high cobble content. Cobbl angular to angular of mudstone and sandstone	es sub
				0.90	175.44	*_************************************		
							SANDSTONE End of pit at 1.00 m	1 .
				1.10	175.24		-	
								3
Rema	arks: No G	roundwa	ater Encountered. Pit	Terminate	ed on roo	khead.		
Stabil	ity:							AGS

											Trialpit	No
						Tri	all	Pit L	.og		TP0	
				Projec	t No		Co-ords:	265015 50) - 838830.0	00	Sheet 1 Date	
Project Name:	Knockna	agael, In	verness	08544			Level:	189.43	J - 030030.0	00	13/02/20	
Locatio	n: Invernes	s					Dimensic				Scale	Э
							(m): Deptl	h			1:20 Logge	
Client:	Field En	ergy			1		1.00				ML	,u
Water Strike	Sample	es and I	n Situ Testing	Depth	Level	Legend	4	St	tratum Deso	cription		
Str	Depth	Туре	Results	(m)	(m)	3				elly silty sand v		-
	0.10	BB		0.20	189.22 188.62 188.42		angula angula	prown very gra ar SAND with	high cobble	fine to coarse content. Cobble and sandstone.	es sub	2
												3
Remark Stability		roundwa	iter Encountered. Pit Te	erminate	ed on roc	khead.					A	I GS

								Trialpit No
						Tri	al Pit Log	TP05
								Sheet 1 of 1
Projec Name:	t . Knockna	agael, Inv	rerness	Projec			Co-ords: 264804.70 - 838888.50	Date
<u> </u>				08544	4		Level: 179.46 Dimensions	13/02/2024 Scale
Locati	on: Inverne	SS					(m):	1:20
Client:	Field Er	iergy					Depth 0.70	Logged ML
e e	Sampl	es and In	n Situ Testing	Depth	Level			
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	TOPSOIL. Dark brown very gravelly silty sand fine rootlets	with very
				0.20	179.26		Grey very gravelly clayey fine to coarse sub an SAND with high cobble content. Cobbles sub angular of mudstone.	ngular
	0.50 0.50	BB ES		0.60	178.86		MUDSTONE	
				0.80	178.66		End of pit at 0.70 m	2
								3
Remai Stabili		roundwat	ter Encountered. Pi	⊥ t Terminate	ed on roo	khead.	1	AGS

											Trial	pit No
						Tri		Pit	Lo	g		P06
												t 1 of 1
Projec Name	ct Knockna	agael, Inv	erness	Projec 08544			Co-ords: Level:	264864. 183.08	90 - 83	8874.20		ate 2/2024
Locati				100011	•		Dimensio					cale
LUCAU		55					(m):	h				:20
Client	: Field Er	nergy					Dept 0.60					gged //L
er (e	Sampl	es and In	Situ Testing	Depth	Level	Legend	1		Stratur	n Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legenc						
	0.10	ES		0.20	182.88		fine ro	otlets		ry gravelly silty sand		-
	0.30	BB		0.20	182.88		angula angula	ar SAND wi	th high c	clayey fine to coarse sobble content. Cobbl Istone and sandstone	les sub	2
												4 —
Rema Stabili		iroundwat	er Encountered. Pit 1	erminate	ed on roc	xhead.						AGS

								Trialpit No
						Tri	al Pit Log	TP07
							_	Sheet 1 of 1
Project Name:	t Knockn	agael, In	verness	Projec			Co-ords: 264976.10 - 838886.60	Date
				08544	4		Level: 187.67 Dimensions	13/02/2024 Scale
Locatio	on: Inverne	SS					(m):	1:20
Client:	Field Er	nergy					Depth 0.80	Logged ML
л e	Sampl	es and I	n Situ Testing	Depth	Level			I
Water Strike	Depth	Туре	Results	(m)	(m)	Legend		
	0.50	BB ES		0.10	187.57		TOPSOIL. Dark brown very gravelly silty sand fine rootlets Light brown very gravelly clayey fine to coarse angular SAND with high cobble content. Cobbl angular to angular of mudstone and sandstone SANDSTONE End of pit at 0.80 m	sub - es sub -
								4
Remar	ks: No G	Groundwa	l ater Encountered. Pi	t Terminate	ed on roo	khead.	1	
Stabilit								AGS

								Trialpit No
						Tr	al Pit Log	TP08
								Sheet 1 of 1
Projec Name	ct Knockna	agael, In	verness	Projec			Co-ords: 264975.00 - 838816.30	Date
				08544	14		Level: 189.01 Dimensions	13/02/2024 Scale
Locati	ion: Inverne	SS					(m):	1:20
Client	: Field Er	nergy					Depth 1.00	Logged ML
er (e	Sampl	es and l	n Situ Testing	Depth	Level	Legend	Stratum Description	
Water Strike	Depth	Туре	Results	(m) 0.20	(m) 188.81		TOPSOIL. Dark brown very gravelly silty sand of fine rootlets	-
	0.50 0.60	ES BB					angular SAND with high cobble content. Cobble angular to angular of mudstone and sandstone	es sub _
						ب می ۵ ف می ف ف می		-
				0.90	188.11	-d	SANDSTONE	
				1.10	187.91		End of pit at 1.00 m	1
Rema	ırks: No G	iroundwa	iter Encountered. Pi	t Terminate	ed on roo	khead.		
Stabili	ity:							AGS

								Trialpit No	
						Tri	al Pit Log	TP09	
							5	Sheet 1 of 1	
Projec Name	t Knockr	nagael, Inve	erness	Projec			Co-ords: 265061.80 - 838831.80	Date	
	•			08544	4		Level: 189.01 Dimensions	13/02/2024 Scale	
Locati	on: Inverne	ess					(m):	1:20	
Client	: Field E	nergy					Depth 1.50	Logged ML	
er (e	Samp	les and In	Situ Testing	Depth	Level	Lagan			
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
	0.50	ES		0.20	188.81		TOPSOIL. Dark brown very gravelly silty san fine rootlets Light brown very gravelly clayey fine to coars angular SAND with high cobble content. Cob angular to angular of mudstone and sandstor SANDSTONE End of pit at 1.50 m	e sub bles sub le.	
Rema		Groundwate	er Encountered. P	it Terminate	ed on roo	khead.		4 AGS	
Stabili	ty:								

								Trialpit No
						Tri	al Pit Log	TP10
							-	Sheet 1 of 1
Projec Name	ct Knockna	agael, In	verness	Projec 08544			Co-ords: 264845.90 - 838899.50 Level: 181.10	Date 13/02/2024
				06544	4		Level: 181.10 Dimensions	Scale
Locati	ion: Invernes	SS					(m):	1:20
Client	: Field En	ergy					Depth 0.70	Logged ML
Water Strike		1	n Situ Testing	Depth (m)	Level (m)	Legend	I Stratum Description	
<u>S S</u>	Depth	Туре	Results	0.20	180.90		TOPSOIL. Dark brown very gravelly silty sand very fine rootlets Light brown very gravelly clayey fine to coarse angular SAND with high cobble content. Cobble angular to angular of mudstone and sandstone.	sub
	0.50 0.50	BB ES		0.60	180.50 180.30		SANDSTONE End of pit at 0.70 m	
Pomo			tor Encountored Dit					
Rema	irks: No G	roundwa	ater Encountered. Pit	Terminate	ed on roo	khead.		AGS
Stabili	ity:							

								Trialpit No
						Tri	al Pit Log	TP11
								Sheet 1 of 1
Project Name:	Knockn	agael, Inve	erness	Projec 08544			Co-ords: 265041.00 - 838931.70	Date 13/02/2024
				08544	4		Level: 185.35 Dimensions	Scale
Locatio	n: Inverne	SS					(m):	1:20
Client:	Field Ei	nergy					Depth 0.80	Logged ML
Water Strike		1 1	Situ Testing	Depth	Level	Legend		
St X	Depth	Туре	Results	(m)	(m)		TOPSOIL. Dark brown very gravelly silty sand v	vith very
				0.10	185.25		fine rootlets Light brown very gravelly clayey fine to coarse angular SAND with high cobble content. Cobble angular to angular of mudstone and sandstone.	es sub
	0.50	BB						
	0.50	ES		0.65	184.70	بن ^م ین ۵٫ ف می فر می	SANDSTONE	
				0.80	184.55		SANDSTONE	
								2 -
Remarl	ks: No (Groundwate	er Encountered. Pi	t Terminate	ed on roo	khead		4 -
Stability								AGS

1.30 191.50 1.50 191.30 End of ph at 1.40 m 							Trialpit No	D
Project Name: Knocknagael, Inverses Project No. 085444 Co-ords: 265037.10 - 838779.00 Date 13/02/2024 Location: Inverses Dimensions (m): 1.40 Dimensions (m): 1.40 Scale 1.20 Client: Field Energy Depth Depth 1.40 Depth 1.40 Dimensions (m): 1.40 Type Results 0.10 192.70 Depth 1.40 ToPSOIL Dark brown very gravelly salty and with very fine coulter gravelly clayey fine to coarse sub angular SAND with high cobble content. Cobbles sub angular SAND with high cobble content. Cobbles sub angular SAND with high cobble content. Cobbles sub angular I Adm 1.00 BB 1.30 191.50 SANDSTONE				Tri	al Pit Log			
Name: KNocknagael, Inverness 085444 Level: 192.80 13/02/2024 Location: Inverness Depth 1:20 Cole Client: Field Energy Depth Control of the sub- section of the sub- section of the sub- transformation of the sub- section of the sub- angular section of the sub- angular of mudstone and sandstone. 1.50 191.50 SANDSTONE 1.50 191.30 SANDSTONE								1
Location: Inverness Dimensions (n): Depth 1.40 Scale 1.20 Client: Field Energy Depth Depth 1.40 Legged ML 3 38 8 8 8 Samples and In Situ Testing (m) Depth (m) Level (m) Legend (m) Stratum Description 0 50 0.50 BB 0.50 BB ES 0.10 192.70 Image: Sharp of the colles sub- angular to angular of mudstone and sandstone. 1 100 BB 1.30 191.50 SANDSTONE 1 100 BB 1.50 191.30	Project Knocknagael, Ir	Verness				79.00		м
Cilent: Field Energy Depth 1.40 Logged Image: Set of the set o		003						
Client Field Energy 1.40 ML Samples and In Situ Testing Depth Level (m) Legend Stratum Description Depth Type Results 0.10 192.70 TopPoll_Dark brown very gravely silty sand with very me roll object to angular of mudstone and sandstone. TopPoll_Dark brown very gravely silty sand with very me roll object to angular of mudstone and sandstone. 0.50 BB 0.50 BB 1.30 191.50 1.00 BB 1.30 191.50 SANDSTONE	Location: Inverness				(m):		1:20	
B E Depth Type Results Image: models Correcteds 0.50 B8 0.10 192.70 Image: models Liggerd COPSOL: Dark brown very gravelly silty sand with very fine rooteds 1.00 B8 1.30 191.50 Image: models SANDSTONE 1.00 B8 1.30 191.50 SANDSTONE	Client: Field Energy							
0.50 BB 0.50 BB 1.00 BB 1.00 BB 1.00 BB 1.00 BB 1.00 BB	່ _{ຍັຍ} Samples and	n Situ Testing Depti	h Level	Logond	Stratum D			
0.50 BB 0.50 BB 1.00 BB 1.00 BB 1.00 BB 1.00 BB 1.00 BB	Strift Depth Type	Results (m)	(m)	Legenu				
	0.50 BB 0.50 ES	1.30	191.50		fine rootlets Light brown very gravelly cla angular SAND with high cobl angular to angular of mudsto SANDSTONE	yey fine to coarse ble content. Cobble ne and sandstone.	sub es sub	2
								-
Remarks: No Groundwater Encountered. Pit Terminated on rockhead.	Remarks: No Groundw	ter Encountered Pit Termina	ated on rock	khead				4 —
Stability:							AG	S

								Trialpit	No
						Tr	ial Pit Log	TP1	
								Sheet 1	
Projec Name	t Knockn	agael, In	verness	Projec 08544			Co-ords: 264930.40 - 839041.50 Level: 173.78	Date 14/02/2	
<u> </u>				00044	-		Dimensions	Scale	
Locati	on: Inverne	55					(m):	1:20	
Client	: Field Er	nergy					Depth 0.40	Logge ML	ed
er Ke	Samp	les and I	n Situ Testing	Depth	Level	Legen	Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legen			
	0.10	ES					TOPSOIL. Dark brown very gravelly silty sar fine rootlets	d with very	-
				0.20	173.58		MUDSTONE		
	0.30	BB							-
				0.40	173.38		End of pit at 0.40 m		
									-
									-
									-
									1 -
									-
									-
									-
									-
									-
									-
									-
									-
									2 -
									-
									-
									-
									-
									-
									-
									-
									-
									3 -
									-
									-
									-
									-
									-
									-
									-
									4 -
Rema	rks: No G	Groundwa	ater Encountered. Pit	Ferminate	ed on roc	khead.			
									L GS
Stabili	ity:								

								Trialpit No
						Tri	ial Pit Log	TP15
							_	Sheet 1 of 1
Projec Name	t Knockr	nagael, Inve	erness	Projec 08544			Co-ords: 264977.70 - 839059.60	Date 12/02/2024
				00544	4		Level: 174.24 Dimensions	Scale
Locati	on: Inverne	ess					(m):	1:20
Client	Field E	inergy					Depth 1.20	Logged ML
л ц	Samp	les and In	Situ Testing	Depth	Level			
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	d Stratum Description	
	0.40 0.40 0.90 0.90	BB ES BB ES		0.25 0.50 1.00 1.20	173.99 173.74 173.24 173.04		TOPSOIL. Dark brown very gravelly silty sand fine rootlets Light brown very gravelly clayey fine to coarse angular SAND with high cobble content. Cobble of mudstone. Grey very gravelly clayey fine to coarse sub an SAND with very high cobble content. Cobbles a mudstone. MUDSTONE End of pit at 1.20 m	sub es angular gular
Rema	rks: No (Groundwate	er Encountered. P	it Terminate	ed on roc	ckhead.		4
Stabili	ty:							AGS

											Trialp	oit No
						Tri	ial I	Pit l	_0	g		16
								004745			Sheet	
Projec Name:	t Knockna	agael, In	verness	Projec 08544			Level:	264715.6 175.60	50 - 83	8968.60	Da 14/02	ate /2024
Locatio					•		Dimensio					ale
LUCAIN		55					(m):	h				20
Client:	Field En	ergy					Deptl 1.20				Log N	ged IL
er (e	Sample	es and I	n Situ Testing	Depth	Level	Legend	4	c	Stratur	Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend				n Description		
	0.10	ES		0.20	175.40		fine ro	otlets very gravelly	clayey	fine to coarse sub an	gular	
							SAND	with high co ar of mudsto	obble co	ontent. Cobbles sub a	ngular to	-
												-
												-
	1.00	BB				ە <u>م</u> رى بەر مەردە مەردە مەردە						1 -
				1.10	174.50		MUDS	TONE				
				1.30	174.30				End o	f pit at 1.20 m		-
												-
												-
												-
												-
												-
												2 -
												-
												-
												-
												-
												-
												-
												-
												3
												-
												-
												-
												-
												-
												-
												-
												-
Rema	rke: No O	roundur	ater Encountered. Pit T	orminata		khood						4 -
rtemal	1N3. NO G	TOUTIOW	aler Encountered. PIT I	51111118(6	50 011 100	kiiedu.						GS
Stabili	ty:											<u>US</u>

					Trialpit No
			Tri	ial Pit Log	TP17
					Sheet 1 of 1
Project Knocknagael, Inverness Name:	Projec			Co-ords: 264775.50 - 839045.30	Date
	08544	4		Level: 174.11 Dimensions	14/02/2024 Scale
Location: Inverness				(m):	1:20
Client: Field Energy				Depth 1.60	Logged ML
Samples and In Situ Testingand backgroupand backgroupbackg	Depth	Level	Legend	Stratum Description	
Solution Depth Type Results 1.00 BB	(m) 0.30 1.50 1.70	(m) 173.81 172.61 172.41		TOPSOIL. Dark brown very gravelly silty sand v fine rootlets Grey very gravelly clayey fine to coarse sub and SAND with high cobble content. Cobbles sub at angular of mudstone. MUDSTONE	- - - gular
Remarks: No Groundwater Encountered. Pit T	erminate	ed on roc	khead.		AGS

												Trialpit	No
						Tri	al	Pit	Lo	g		TP1	
				. ·				004007				Sheet 1	
Project Name:	t Knockna	igael, In	verness	Projec 08544			Co-ords: Level:	264927 172.14		9091.20		Date 14/02/20	
Locatio				00011	•		Dimensio					Scale	
Localic	on: Invernes	5					(m):	la.				1:20	
Client:	Field En	ergy					Dept 0.90					Logge ML	d
er e	Sample	es and I	n Situ Testing	Depth	Level				01 1	D			
Water Strike	Depth	Туре	Results	(m)	(m)	Legend				n Description			
	0.50	BBES		0.30	171.84		fine ro Grey \ SAND angula	ootlets very gravel	ly clayey cobble co tone.	fine to coarse ontent. Cobble	sub and	ular	
Remar	ke: No C	roundwr		rminoto	d on roc	khead							4 -
Remar Stabilit		IOUNOWA	ater Encountered. Pit Te	erminate	u on roc	sknead.						A	□ GS
Stabill	y												

2.00 BB 2.00 168.09 MUDSTONE 2 2.50 167.59 End of pit at 2.50 m 3									Trialpit N	0
Project Name: Knocknagsel, Inverness Project No. DBS444 Ge-ords:: 284883.0 - 839055.70 Date 14022020 Location: Inverness Sonie Sonie <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Tri</th><th>al Pit Log</th><th>TP19</th><th>)</th></td<>							Tri	al Pit Log	TP19)
Name: Knochaggel, inverness 08844 Level: 170.09 14022024 Location: Inverses Sole Omensions Sole Sole<										f 1
Location: Inverses Status Scale Client: Field Energy 2.60 120 120 3 g g S Samples and in Situ Testing Depth Depth 2.60 100 3 g g S Samples and in Situ Testing Depth Depth Legend Statum Description 0.70 ES 0.60 109.49 Soft grey sandy silly CLAY 1.00 BB 0.60 109.49 Soft grey sandy silly CLAY 1.00 BB 2.00 188.49 Soft grey sandy silly CLAY 2.00 BB 2.00 188.49 MUDSTONE 2.00 BB 2.50 167.59 MUDSTONE	Project Name [:]	Knockn	agael, Invei	mess	-					24
Client: Field Energy 1200		n: Inverne			00044			Dimensions		
Series Samples and in Situ Testing Depth Depth (m) Level (m) Level (m) Level (m) Composition ML 10950L Depth Type Results 0.0 189.49 Soft grey sandy silly CLAV 100 Stratum Description 1.00 B3 0.60 189.49 Soft grey sandy silly CLAV 1 2.00 B3 0.60 189.49 Soft grey sandy silly CLAV 1 2.00 B3 0.60 189.49 Soft grey sandy silly CLAV 1 2.00 B3 2.00 188.09 Soft grey sandy silly CLAV 1 2.00 B3 2.00 188.09 Soft grey sandy silly CLAV 1										
B Depth Type Results (m) (m) (m) Composition 0.70 ES 0.60 189.49 Soft grey sandy silty CLAY Inc. routeds 100 BB 0.60 189.49 Soft grey sandy silty CLAY 1 1.00 BB 2.00 168.69 2.00 168.69 MUDSTONE 2 1 3 2.00 BB 2.00 167.59 167.59 MUDSTONE 3 3	Client:					1	1	2.50		
0.70 ES 0.60 189.49 TOPSOL. Dark brown very gravelly slity sand with very fine rootets 1.00 BB 0.60 189.49 Soft grey sandy slity CLAY 1 2.00 BB 2.00 188.09 Topsol grey sandy slity CLAY 1 2.00 BB 2.00 188.09 MUDSTONE 2 3 3 3 3 3	ater		1			Level (m)	Legenc	Stratum Description		
2.00 BB 2.00 168.09 MUDSTONE 2 2.00 168.09 MUDSTONE 2 2.00 168.09 MUDSTONE 3 3.00 End of pit at 2.50 m 3 3.00 End of pit at 2.50					0.60	169.49		fine rootlets	vith very	
2.50 167.59 End of pit at 2.50 m 3		1.00	BB							1 -
		2.00	BB		2.00	168.09		MUDSTONE		2 -
					2.50	167.59		End of pit at 2.50 m		3 -
Remarks: No Groundwater Encountered. Pit Terminated on rockhead.	Remark	ks: No C	Groundwate	r Encountered. F	Pit Terminate	ed on roc	khead.			4 -

								Trialpit No
						Tri	al Pit Log	TP20
								Sheet 1 of 1
Projec Name	ct Knockn	agael, Inve	erness	Projec 08544			Co-ords: 264801.80 - 839102.20 Level: 170.50	Date 14/02/2024
<u> </u>				00544	4		Dimensions	Scale
Locati	ion: Inverne	SS					(m):	1:20
Client	: Field Er	nergy					Depth 1.60	Logged ML
ater Tike			Situ Testing	Depth	Level	Legend	I Stratum Description	
Water Strike	Depth 0.50 1.00	Type ES BB	Results	0.20 0.20 1.50 1.70	170.30 169.00 168.80		Muddl Stratum Description TOPSOIL. Dark brown very gravelly silty sar fine rootlets Grey very gravelly clayey fine to coarse sub SAND with high cobble content. Cobbles su angular of mudstone. MUDSTONE End of pit at 1.60 m	angular
								4 -
Rema	irks: No G	Groundwate	er Encountered. Pi	it Terminate	ed on roo	khead.		
Stabili	ity:							AGS

Trial Pit L	og	TP21
		Sheet 1 of 1
' Knocknadael Inverness	- 839138.10	Date
Dimensions		14/02/2024 Scale
Location: Inverness (m):		1:20
Client: Field Energy Depth 1.00		Logged ML
Samples and In Situ Testing Depth Level		1
Interview 1.00 Image: Section of the section o	atum Description In very gravelly silty sand ayey fine to coarse sub ar ole content. Cobbles sub a content. Cobbles sub a defended pit at 1.00 m	ML
		-
		-
		4 —
Remarks: No Groundwater Encountered. Pit Terminated on rockhead. Stability:		AGS

								Trialpit No
						Tri	al Pit Log	TP22
							-	Sheet 1 of 1
Project Name:	Knockr	nagael, Inve	erness	Projec 08544			Co-ords: 265009.30 - 839040.70	Date 12/02/2024
				06544	4		Level: 178.54 Dimensions	Scale
Locatio	n: Inverne	ess					(m):	1:20
Client:	Field E	nergy			1	1	Depth 1.60	Logged ML
Water Strike	Samp Depth	Type	Situ Testing Results	Depth (m)	Level (m)	Legend	I Stratum Description	
	0.30 0.80	BB ES		0.20	178.34 178.04		fine rootlets Light brown very gravelly clayey fine to coar angular SAND with high cobble content. Col of mudstone. Grey very gravelly clayey fine to coarse sub SAND with very high cobble content. Cobble mudstone.	angular
	1.00	BB		1.50	177.04		MUDSTONE	1-
				1.60	176.94		End of pit at 1.60 m	
Remark Stability		Groundwate	er Encountered. P	Pit Terminate	ed on roo	khead.		AGS

								Trialpit I	No
						Tri	al Pit Log	TP2	
								Sheet 1 o	
Project Name:	Knockn	agael, Inv	erness	Projec 08544			Co-ords: 265059.10 - 838772.70 Level: 192.45	Date 13/02/20	
				00044	r		Dimensions	Scale	
Locatio	on: Inverne	SS					(m):	1:20	
Client:	Field Ei	nergy					Depth 1.50	Logge ML	d
г e	Samp	les and In	Situ Testing	Depth	Level				
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
	0.30	BB		0.10	192.35 191.05 190.85		TOPSOIL. Dark brown very gravelly silty san fine rootlets Light brown very gravelly clayey fine to coars angular SAND with high cobble content. Cob angular to angular of mudstone and sandstor SANDSTONE End of pit at 1.50 m	e sub bles sub	
Remar	ks: No G	Groundwat	er Encountered. Pi	t Terminate	ed on roo	khead	1		
Stabilit								AG	I S

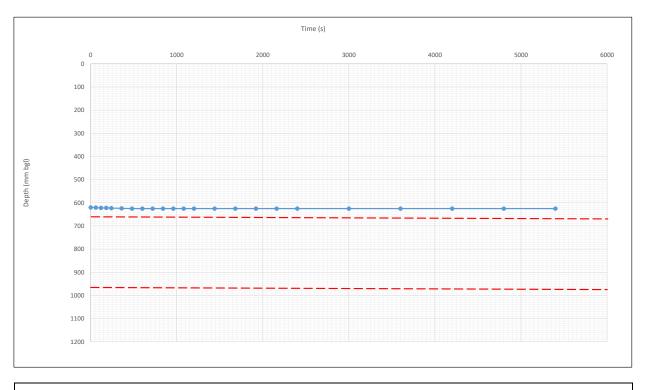
								Trialpit No			
						Tri	al Pit Log	TP24			
								Sheet 1 of 1			
Projec Name	ct Knockna	agael, In	verness	Projec 08544			Co-ords: 264888.00 - 838957.30	Date 13/02/2024			
				00044	4		Level: 178.69 Dimensions	Scale			
Locati	ion: Invernes	SS					(m):	1:20			
Client	: Field En	iergy					Depth 0.60	Logged ML			
ter ke	Sample	es and I	n Situ Testing	Depth	Level	Legend	d Stratum Description				
Water Strike	Sampli Depth 0.50 0.50	BB ES	n Situ Testing Results	Depth (m)	Level (m) 178.49 178.19 177.99	Legenc	Stratum Description TOPSOIL. Dark brown very gravelly silty sand fine rootlets Light brown very gravelly clayey fine to coarse angular SAND with high cobble content. Cobble angular to angular of mudstone and sandstone SANDSTONE	sub			
Deri	rto		tor Engentier d. D.			libert		4			
Remarks: No Groundwater Encountered. Pit Terminated on rockhead.											
Stability:											

G							Borehole No.					
Drilling Ltd				D	UIEII	rehole Log			Sheet 1 of 1			
Project Name: Location:		Knocknagael			Project No. GD 0718		Co-ords: E: 264806.8 N: 838926.6 Level: 178.00			26.6	Hole Type WS Scale 1:25	
Client:		Curtins					Dates:	13/02/2024		Rig Typ Competitor		
Well	Water Strikes		Sample and In Situ Testing			Level (m)	Legend		Stratum De	escription		
	SUIRES Depth (m) Type Results 0.10 ES			(m) 0.45 0.70 1.20 1.40	177.55 177.30 176.80 176.60		Grass over dark brown sandy TOPSOIL with occasional rootlets and broken sandstone. Driller's description. Firm to stiff reddish brown weathered sandy gravelly CLAY. Driller's description. Reddish purple sandy angular fine to coarse GRAVEL of sandstone with frequent angular cobbles of sandstone (presumed weathered bedrock). Sand is fine to coarse. Extremely weak reddish purple SANSTONE, recovered as a fine to coarse gravel (presumed weathered bedrock). Wo further progress. presumed bedrock. End of Borehole at 1.40m			e. Driller's dy gravelly rse GRAVEL as of (). Sand is NE,		
											3 - 4 - 5 -	
Rema									Logged By:	Checked By:	G	
depth	of 1.40m	lug to a depth and terminate mpletion.	ot 1.20 ed on p	m. Borehole progre resumed bedrock. \$	ssed with win Slight Seepag	dowless s e at 1.00n	ampling te n. Borehole	chniques to a e fitted with a	KP	GD	Drilling Ltd	

Drilling Ltd				Borehole CP02	2				
Project Name:		Knocknagael				Co-ords:	E: 264875.4 N: 838939.0	Sheet 1 o Hole Typ WS	
Location:	Inverne	Inverness				Level:	179.33	Scale	
Client:	Curtins	Curtins				Dates:	14/02/2024	1:25 Rig Type Competitor Dart	
Well Water Strikes			Depth (m)	Level (m)	Legend				
Well Water Strikes	Sample Depth (m) 0.10 0.50 0.80 1.00 1.20 - 1.60 1.20	ES ES ES B ES D SPT	N=50 (12,12/50 for 250mm)	(m)	Level (m) 178.93 178.03 177.73	Legend	Stratum Descrip Grass over dark brown sandy TOF occasional rootlets and broken san description. Reddish brown clayey very gravel SAND. Gravel is angular and subs coarse of various lithologies inclue sandstone. Extremely weak reddish purple SA recovered as a fine to coarse grav weathered bedrock). Wo further progress, presumed bedrock. End of Borehole at 1.	PSOIL with ndstone. Driller's ly fine to coarse angular fine to ling frequent	
Remarks: Inspection pit d depth of 1.60m wellpoint on co	and terminate	of 1.20r	n. Borehole progre esumed bedrock. S	ssed with win Slight Seepag	dowless s e at 1.20m	ampling te	chniques to a	GD FINA	

Drilling Ltd							Borehole No. CP03 Sheet 1 of 1					
Project Name:		Knocknagael			Project No. GD 0718		Co-ords: E: 264858.		3 N: 8388	52.4	Hole Type WS	
Location:		Inverne	Inverness				Level:	Level: 183.32			Scale	
Client:		Curtins	Curtins				Dates:	Dates: 13/02/2024			1:25 Rig Type Competitor Dart	
Well Water		_	e and l	n Situ Testing		Level	Legend	Stratum Description				
	Strikes	Depth (m) 0.20 0.40 0.80 1.00 1.20 - 1.45 1.20	Type ES ES B ES D SPT	Results 50 (11.14/50 for 100mm)	(m) 0.25 0.50	Level (m) 183.07 182.82 182.12 181.87	Legend	Grass over dark occasional rooti Brown very clay description. Brown clayey we occasional cobt fine to coarse of are angular of s Extremely weak recovered as a weathered bedr Wo further progress, pro	brown sand ets and cobb ey SAND an ery gravelly fi les. Gravel is predominan andstone.	y TOPSOIL v les. Driller's d d GRAVEL. I ne to coarse s angular and tly sandstone	Driller's SAND with d subangular e. Cobbles	
Remar	ks:					1			Logged By:	Checked By		<u> </u>
Inspection pit dug to a depth of 1.20m. Borehole progressed with windowless sampling techniques to a depth of 1.45m and terminated on presumed bedrock. No groundwater encountered. Borehole fitted with a wellpoint on completion.											Drilling	

Di) rd				В	oreh	ole Log			Borehole No. CP04 Sheet 1 of 1	
	ct Name:		agael		Project No. GD 0718		Co-ords:	E: 264915.4	4 N: 8389	16.0	Hole Typ WS	
Locati	ion:	Inverne	SS				Level:	181.09			Scale 1:25	
Client	:	Curtins					Dates:	14/02/2024			Rig Type Competitor	
Well	Water Strikes	_		n Situ Testing	Depth (m)	Level (m)	Legend		Stratum De	escription		
		Depth (m) 0.10 0.50 0.80 1.00 1.20 - 1.50 1.20	Type ES ES D SPT	Results 50 (10,14/50 for 200mm)	0.45	180.64		Grass over dark occasional root	ets and cobb ery sandy ang /EL of predon . Frequent ar d. reddish purp fine to coarse ock).	Jular and sub ninantly sand ngular cobble De SANSTON gravel (pres	lescription. angular fine stone. Sand s of	
depth	tion pit d of 1.55m	lug to a depth and terminate mpletion.	of 1.20 ed on pr	m. Borehole progr resumed bedrock.	essed with win Slight Seepag	dowless s e at 1.00n	ampling te n. Borehole	chniques to a e fitted with a	Logged By: KP	Checked By:	Drilling	


G)			D	oroh			Borehole No.		
Drilling	Ltd				D	UIEII	ole Log		CPU5 Sheet 1 of 1	
			P	Project No.		Co. ordou	E. 264066 4 N. 828	047.4	Hole Type	
Project Nan	ne: Knockna	agaei	C	GD 0718		Co-ords:	E: 264966.4 N: 8388	547.4	WS Scale	
Location:	Invernes	SS				Level:	188.68		1:25	
Client:	Curtins					Dates:	13/02/2024		Rig Type Competitor Dart	t
Well Wate Strike			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum D	escription		
	Depth (m)	Туре	Results	(11)	(11)		Grass over dark brown sand	dy TOPSOIL w	vith	
	0.10	ES ES		0.15	188.53		occasional rootlets and cob Brown very clayey SAND an description.			-
	0.80	в		0.50	188.18		Brown slightly silty very gra with frequent pockets of firm angular of predominantly sil mudstone	n gravelly clay.	Gravel is	-
	1.00 1.20 - 1.65 1.20	ES D SPT	N=37 (8,8/8,8,9,12)						1	1
				1.50	187.18		Firm brown slightly sandy g angular of predominantly sil mudstone			-
	1.80	В								-
	2.00 - 2.30 2.00	D SPT	50 (12,12/50 for 150mm)	2.10	186.58		Extremely weak reddish pur recovered as a fine to coars		NE,	2 —
				2.30	186.38		weathered bedrock). <u>No further progress, presumed bedrock</u> End of Boreh	K.		
Remarks:							Logged By:		5	4
Inspection p depth of 2.30	it dug to a depth Om and terminate on completion.	of 1.20i d on pr	n. Borehole progres esumed bedrock. N	ssed with wind lo groundwate	dowless s er encoun	ampling teo tered. Bore	chniques to a	GD	Drilling Ltd	

(<u> </u>											Borehole I	No.	
	9						В	oreh	ole Log		CP06			
Dr	illing Lt	d			Dr	oject No.						Sheet 1 of Hole Typ		
Projec	t Name:	Knockn	agael			D 0718		Co-ords:	E: 265042.	1 N: 8389	20.1	CP		
Locati	on:	Inverne	ss					Level: 185.95				Scale		
Client:		Curtins						Dates:	12/02/2024			1:25 Rig Type		
	Water	Sample	e and I	n Situ Testi	ng	Depth	Level			0	·	DANDO 20		
	Strikes	Depth (m)	Туре	Resu	ults	(m)	(m)	Legend		Stratum De				
		0.20	ES			0.30	185.65		Grass over dark occasional rootl	ets and cobb	les. Driller's d	escription.	-	
		0.50	ES			0.50	100.00		Soft brown very occasional angu to coarse of pre subangular of s	ular cobbles. dominantly s	Gravel is suba	angular fine	-	
		0.80	в										-	
		1.00	ES			1.00 1.10	184.95 184.85		Extremely weak recovered as a weathered bedr No further progress, pro-	fine to coarse ock). esumed bedrock.	e gravel (pres	IE, umed		
										End of Boreho			2	
Remar	ks:		I	<u> </u>		1	1		1	Logged By:	Checked By:			
Inspect encour	tion pit d ntered. B	lug to a depth sorehole fitted	of 1.10 with a v	m and termi wellpoint on	nated on completic	presumed b on.	edrock. N	lo groundw	rater	KP	GD	Drilling		

Curtins Ltd

1a Belford Mews, Edinburgh Tel: 0121 643 4694

CALCU	ATION SHEET - SOIL INFILTRATION RATE			RAW	DATA	
Project: Job Number: Author:	Knocknagael, Inverness 085444 KD		Project: Job Number: Author:	Knocknagael, Inv 085444 KD	erness	
Hole Ref.:	SA01	ΙΓ	Hole Ref.:	SA01		
Test Date:	12/02/2024		Test Date:	12/02/2024		
Test No.:	1 of 1		Test No.:	1 of 1		
1.80 m	Length of trial pit	ΙΓ	Time (min)	Time (s)	Depth (mm bgl)	Stratum
0.60 m	Width of trial pit		0	0	620	
1.60 m	Depth (total) of trial pit		1	60	621	
1.08 m ²	Area of trial pit base		2	120	622	
0.62 m bgl	Water level at start of test (approximate invert level)		3	180	622	
0.65 m bgl	Water level at end of test		4	240	623	
			6	360	624	
0.03 m	Effective storage depth		8	480	625	
0.63 m bgl	Effective storage depth (75% full)		10	600	625	
0.64 m bgl	Effective storage depth (25% full)		12	720	625	
			14	840	625	Light brown v
0.016 m ³	Effective storage volume (V75-25)		16	960	625	gravelly clayey to coarse su
1.152 m ²	Internal surface area (50% effective depth) (a_{50})		18	1080	625	angular SAN
3420 s	Time for head to fall from 75% to 25% effective depth (t75-25)		20	1200	625	with high cob
			24	1440	625	content/MUDS E
			28	1680	625	
			32	1920	625	
.11E-06 m/s	Soil infiltration rate (f)		36	2160	625	
			40	2400	625	
			50	3000	625	
			60	3600	625	
			70	4200	625	
			80	4800	625	
			90	5400	625	

Note 1: Pit backfilled with arisings.

Curtins Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG Tel: 0161 236 2394 Fax: 0161 228 7902

Curtins

GAS MONITORING LOG SHEET

Project:	Knocknagael	Date:	13/03/2024
Job Number:	####	Visit:	1
Client:	Field.Energy	Weather:	Weather
Barometric State:	Stable	Ground Conditions:	Dry

Borehole Reference	Barometric Pressure mb	Fic	ow		nane %	Dio	bon xide %	Oxygen %	Hydrogen Sulphide	Carbon Monoxide	Water Level m bgl	Borehole Base m bgl	Note
	mb	Max	" SS	Max	SS	Max	SS	70	ppm	ppm	in bgi	in bgi	
CP01	996	0.0	0.0	0.0	0.0	0.3	0.3	20.1	0	0	DAMP	1.15	
CP02	996	0.0	0.0	0.0	0.0	0.1	0.1	20.5	0	0	DAMP	1.20	
CP03	996	0.0	0.0	0.0	0.0	0.1	0.1	20.3	0	0	DAMP	1.18	
CP04	996	0.0	0.0	0.0	0.0	0.2	0.2	20.9	0	0	1.15	1.20	
CP05	996	0.0	0.0	0.0	0.0	0.1	0.1	21.1	0	0	DAMP	1.95	
CP06	996	0.0	0.0	0.0	0.0	0.1	0.1	20.4	0	0	DAMP	1.05	

Notes

Logged by

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated Curtins

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG Tel: 0161 236 2394 Fax: 0161 228 7902

Curtins

GAS MONITORING LOG SHEET

Project:	Knocknagael	Date:	27/03/2024
Job Number:	####	Visit:	2
Client:	Field.Energy	Weather:	Wet
Barometric State:	Stable	Ground Conditions:	Wet

Borehole Reference	Barometric Pressure		w		nane	Dio	bon xide	Oxygen	Hydrogen Sulphide	Carbon Monoxide	Water Level	Borehole Base	Note
	mb		hr		6		6	%	ppm	ppm	m bgl	m bgl	,
		Max	SS	Max	SS	Max	SS						
CP01	986	0.0	0.0	0.0	0.0	0.2	0.2	20.40	0	0	DAMP	1.15	
CP02	986	0.0	0.0	0.0	0.0	0.1	0.1	20.60	0	0	DAMP	1.20	
CP03	986	0.0	0.0	0.0	0.0	0.1	0.1	20.50	0	0	DAMP	1.18	
CP04	986	0.0	0.0	0.0	0.0	0.1	0.1	20.80	0	0	1.16	1.20	
CP05	986	0.0	0.0	0.0	0.0	0.1	0.1	21.00	0	0	DAMP	1.95	
CP06	986	0.0	0.0	0.0	0.0	0.1	0.1	20.5	0	0	DAMP	1.05	
0													
0													
0													
0													
0													
0													
0													
0													
0													

Notes

Logged by

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated Curtins

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG Tel: 0161 236 2394 Fax: 0161 228 7902

Curtins

GAS MONITORING LOG SHEET

Project:	Knocknagael	Date:	09/04/2024
Job Number:	####	Visit:	3
Client:	Field.Energy	Weather:	Wet
Barometric State:	Steady	Ground Conditions:	Wet

Borehole Reference	Barometric Pressure		w		nane	Dio	bon xide	Oxygen	Hydrogen Sulphide	Carbon Monoxide	Water Level	Borehole Base	Note
	mb		hr		6		6	%	ppm	ppm	m bgl	m bgl	,
		Max	SS	Max	SS	Max	SS						
CP01	1004	0.0	0.0	0.0	0.0	0.2	0.2	20.2	0	0	DAMP	1.15	
CP02	1004	0.0	0.0	0.0	0.0	0.1	0.1	20.5	0	0	DAMP	1.20	
CP03	1004	0.0	0.0	0.0	0.0	0.2	0.2	20.4	0	0	DAMP	1.18	
CP04	1004	0.0	0.0	0.0	0.0	0.1	0.1	20.6	0	0	DAMP	1.20	
CP05	1004	0.0	0.0	0.0	0.0	0.1	0.1	21.1	0	0	DAMP	1.95	
CP06	1004	0.0	0.0	0.0	0.0	0.1	0.1	20.1	0	0	DAMP	1.05	
0													
0													
0													
0													
0													
0													
0													
0													
0													

Notes

Logged by

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated

LABORATORY TEST CERTIFICATE

Certificate No : To : Client : 24/260 - 01-1 Mark Lane Curtins Ltd. 1a Belford Road Edinburgh EH4 3BL

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow G33 3NQ

Tel: 0141 774 4032

email: info@mattest.org Website: www.mattest.org

LABORATORY TESTING OF SOIL

Introduction

We refer to samples taken from Knock and delivered to our laboratory on 20th February 2024.

Material & Source

Sample Reference	:	See Report Plates
Sampled By	:	Client
Sampling Certificate	:	Not Supplied
Location	:	See Report Plates
Description	:	See Page 2
Date Sampled	:	Not Supplied
Date Tested	:	28th February 2024 Onwards
Source	:	085444 - Knock

Test Results

As Detailed On Page 2 to Page 32 inclusive

Comments

The results contained in this report relate to the sample(s) as received Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory All remaining samples for this project will be disposed of 28 days after issue of this test certificate

Remarks

T McLelland (Director)

lssue No. 01

18/03/2024

TRIAL PIT	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
TP01	В	0.50	Brown silty fine to coarse CRUSHED ROCK with cobbles.
TP02	В	0.50	Brown slightly clayey sandy fine to coarse SAND and GRAVEL / CRUSHED ROCK with cobbles.
TP03	В	0.60	Brown slightly clayey silty fine to coarse SAND and GRAVEL.
TP08	В	0.50	Brown slightly clayey silty sandy fine to coarse GRAVEL with cobbles.
TP10	В	0.50	Brown very silty sandy fine to coarse GRAVEL / CRUSHED ROCK with cobbles.
TP11	В	0.50	Brown silty very clayey fine to coarse CRUSHED ROCK / SAND and GRAVEL with cobbles.
TP12	В	1.00	Brown slightly clayey very silty very sandy fine to coarse GRAVEL.
TP16	В	0.50	Brown slightly silty clayey fine to coarse SAND and GRAVEL / CRUSHED ROCK.
TP16	В	0.90	Brown slightly clayey very silty fine to coarse SAND and GRAVEL with cobbles.
TP19	В	1.00	Brown clayey very silty fine to coarse SAND and GRAVEL.
TP19	В	2.00	Brown slightly clayey silty very sandy fine to coarse GRAVEL with cobbles.
TP20	В	1.00	Brown silty slightly clayey fine to coarse SAND and GRAVEL / CRUSHED ROCK.
TP21	В	0.50	Brown slightly clayey silty fine to coarse SAND and GRAVEL with cobbles.
TP22	В	1.00	Brown slightly silty very clayey fine to coarse CRUSHED ROCK.
TP23	В	0.50	Brown slightly silty clayey fine to cobble-sized CRUSHED ROCK.
TP24	В	0.50	Brown slightly clayey silty fine to coarse SAND and GRAVEL / CRUSHED ROCK.

SUMMARY OF SAMPLE DESCRIPTIONS

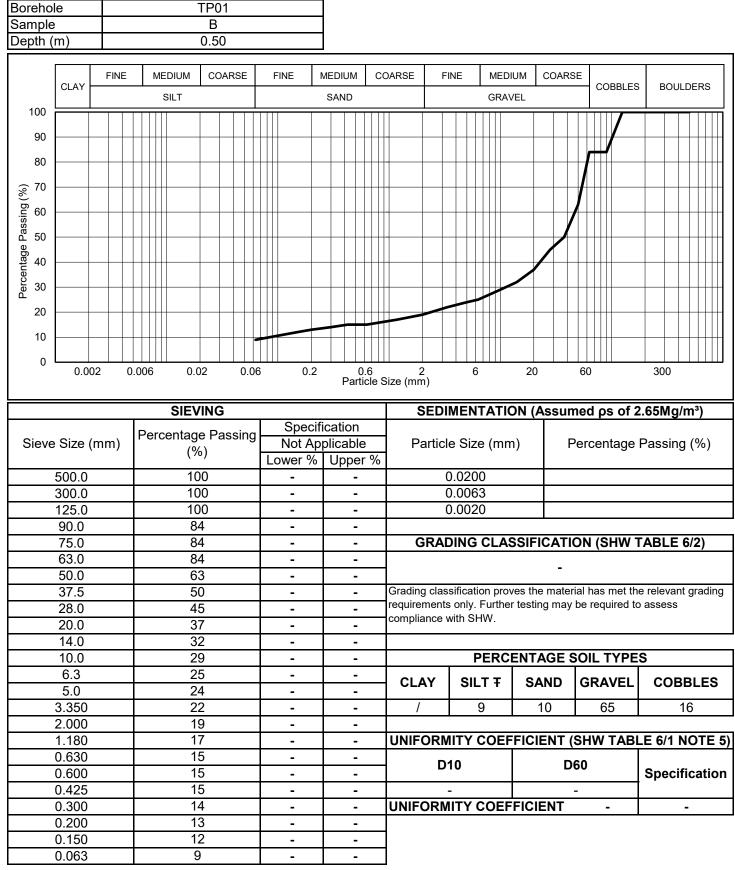
TRIAL PIT	SAMPLE	DEPTH (m)	WATER CONTENT (%)
TP01	В	0.50	7.5
TP02	В	0.50	10.4
TP03	В	0.60	10.4
TP08	В	0.50	12.8
TP10	В	0.50	10.7
TP11	В	0.50	10.3
TP12	В	1.00	10.4
TP16	В	0.50	11.1
TP16	В	0.90	11.8
TP19	В	1.00	19.7
TP20	В	1.00	13.1
TP21	В	0.50	19.6
TP22	В	1.00	11.1
TP23	В	0.50	8.5
TP24	В	0.50	14.0

Tested in accordance with BS 1377 - 2 : 2022 : Clause 4.1

SUMMARY OF WATER CONTENT TEST RESULTS

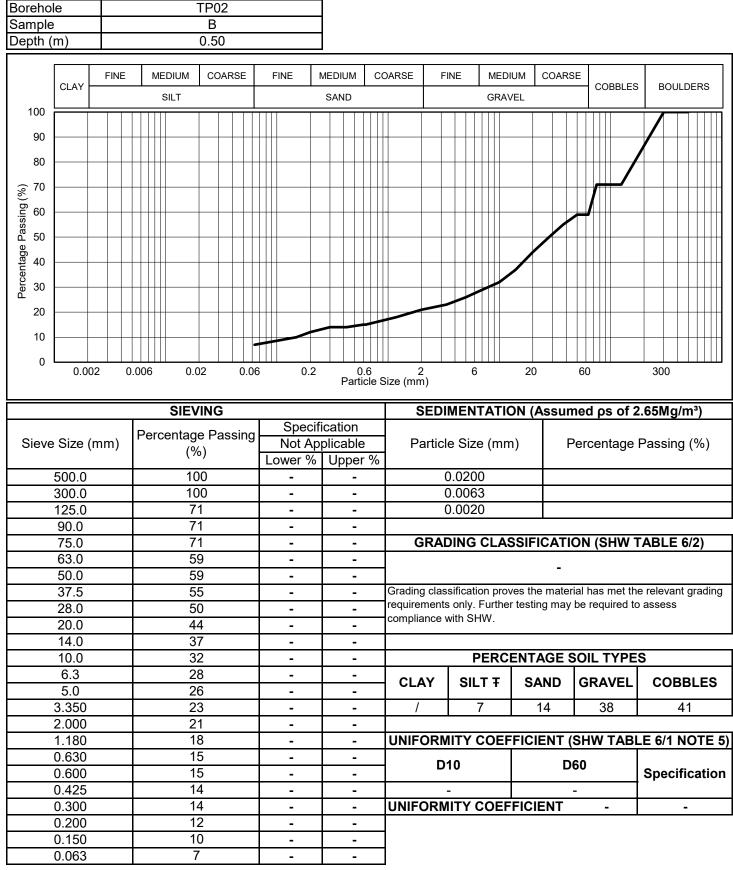
TRIAL PIT	SAMPLE	DEPTH (m)	WATER CONTENT (%)	BULK DENSITY (Mg/m ³)	DRY DENSITY (Mg/m ³)
TP01	В	0.50	7.5	1.92	1.79
TP08	В	0.50	12.8	2.08	1.84
TP11	В	0.50	10.3	2.16	1.96
TP16	В	0.90	11.8	2.15	1.92
TP23	В	0.50	8.5	2.14	1.97

Tested in accordance with BS 1377 - 2 : 2022 : Clause 8 Bulk Density : Linear Measurement


SUMMARY OF WATER CONTENT AND BULK DENSITY TEST RESULTS

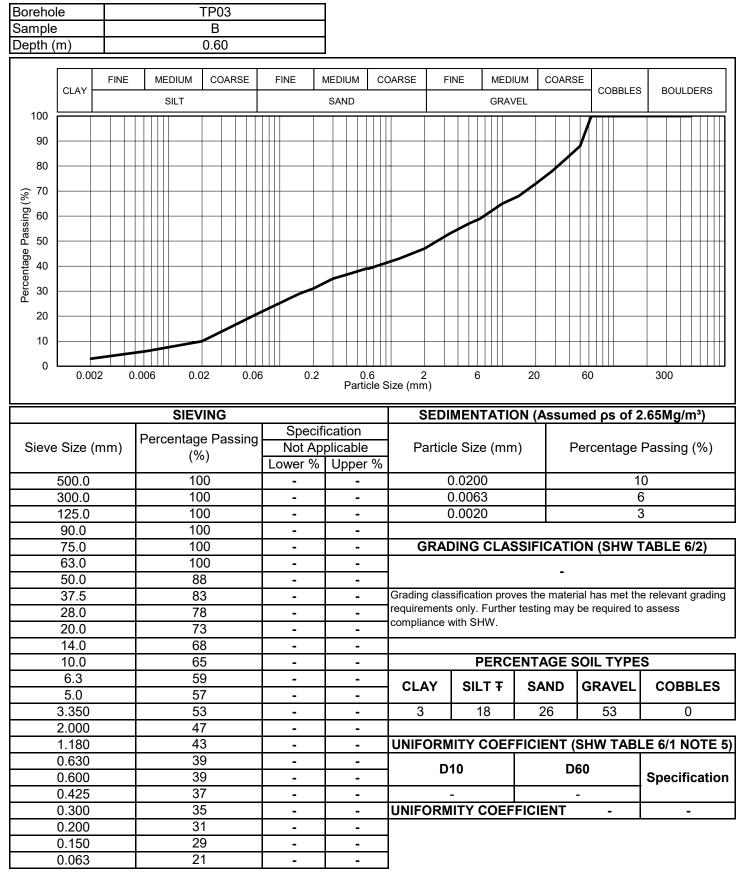
TRIAL PIT	SAMPLE	DEPTH (m)	PARTICLE DENSITY (Mg/m³)
TP01	В	0.50	2.55
TP08	В	0.50	2.53
TP11	В	0.50	2.52
TP16	В	0.90	2.51
TP23	В	0.50	2.54

Tested in accordance with BS 1377 - 2 : 2022 : Clause 9.2 (Gas jar method)


SUMMARY OF PARTICLE DENSITY TEST RESULTS

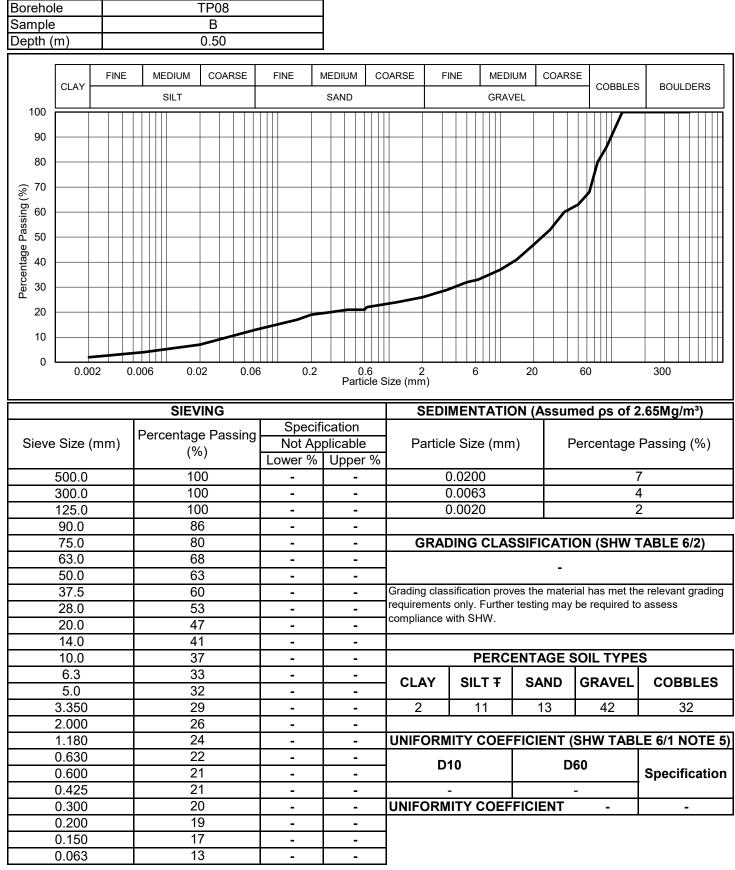
Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type



Remarks

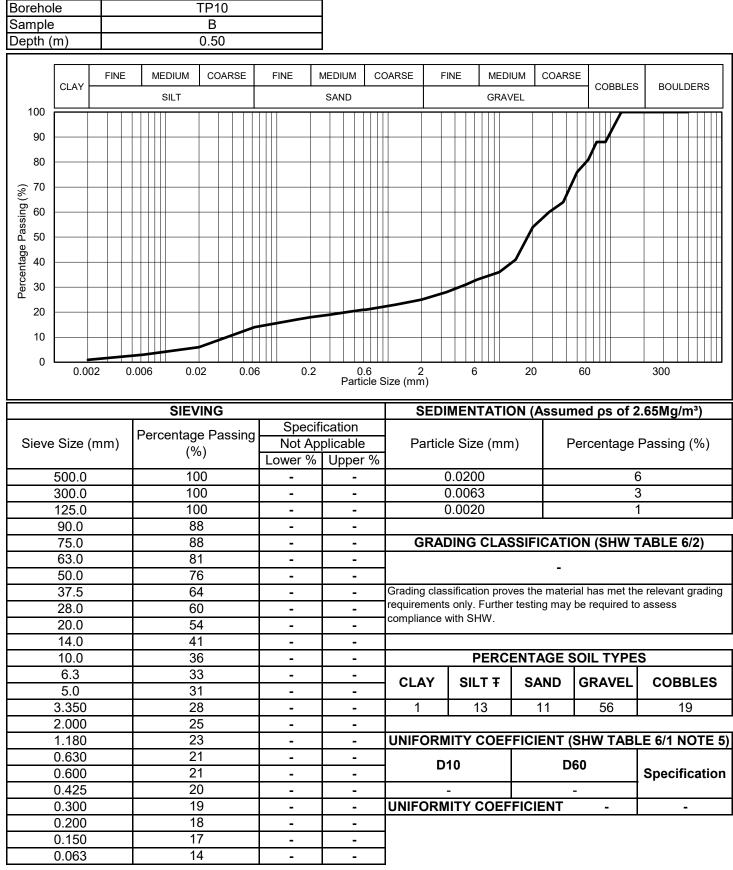
F Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type


Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

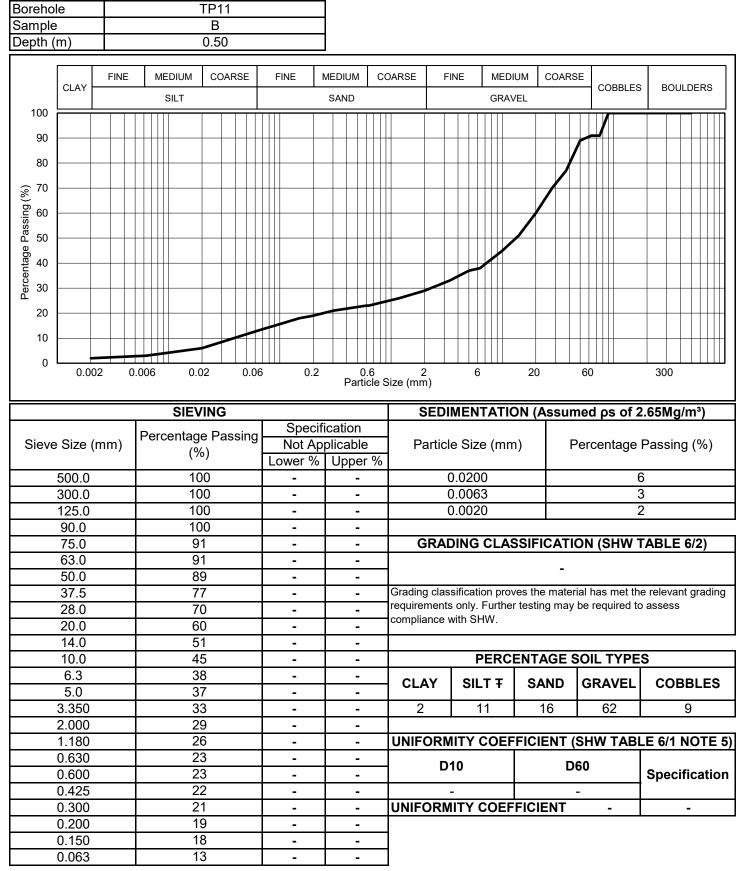
PARTICLE SIZE DISTRIBUTION - BS 1377 - 2 : 2022 : CLAUSE 10

Page 8 of 32



Remarks

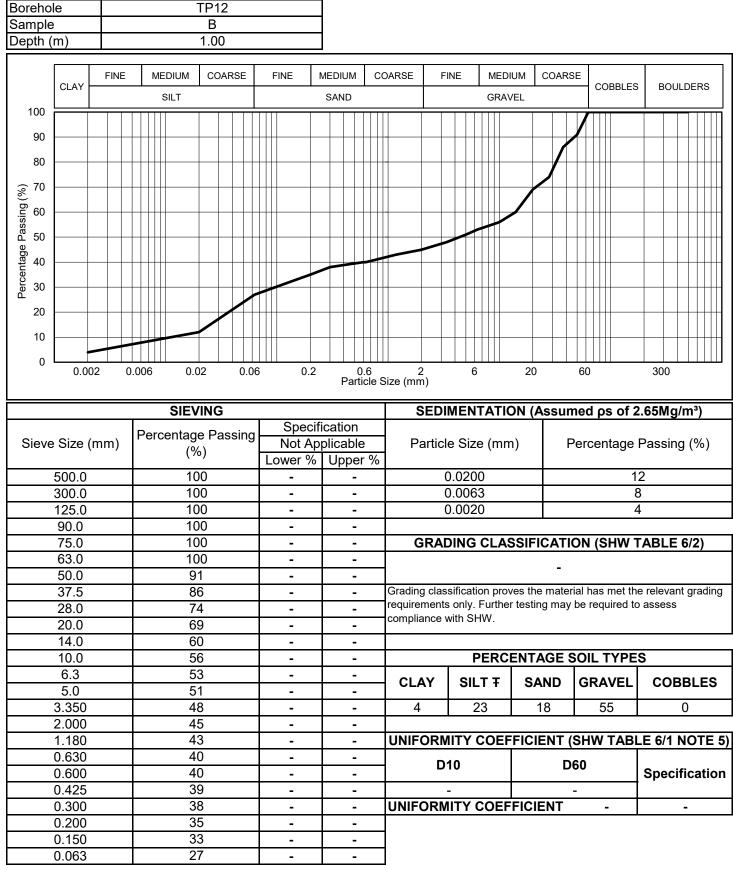
T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type


Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

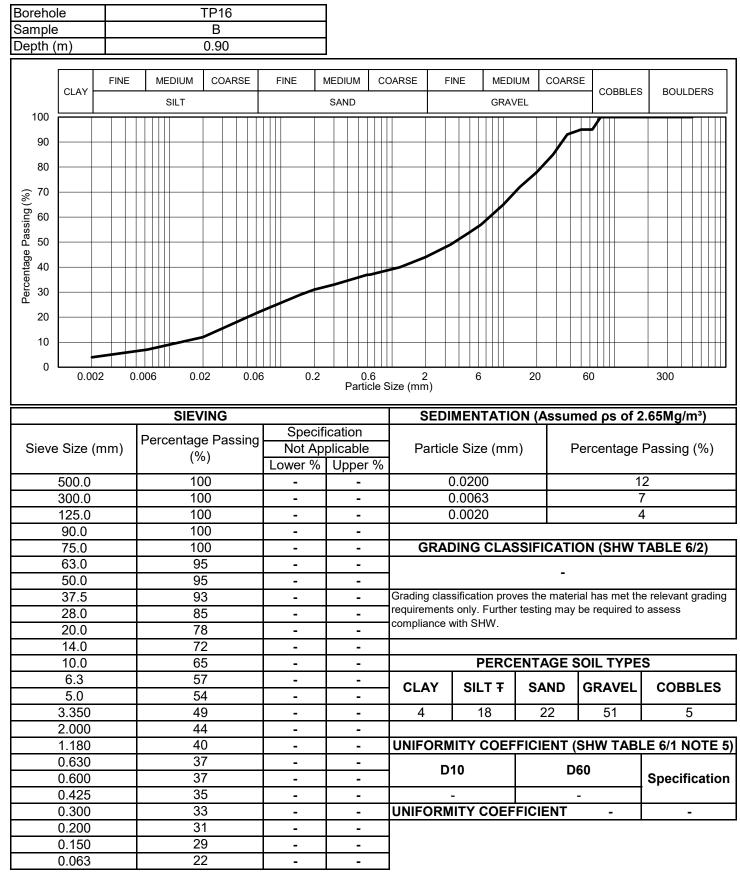
PARTICLE SIZE DISTRIBUTION - BS 1377 - 2 : 2022 : CLAUSE 10

Page 10 of 32



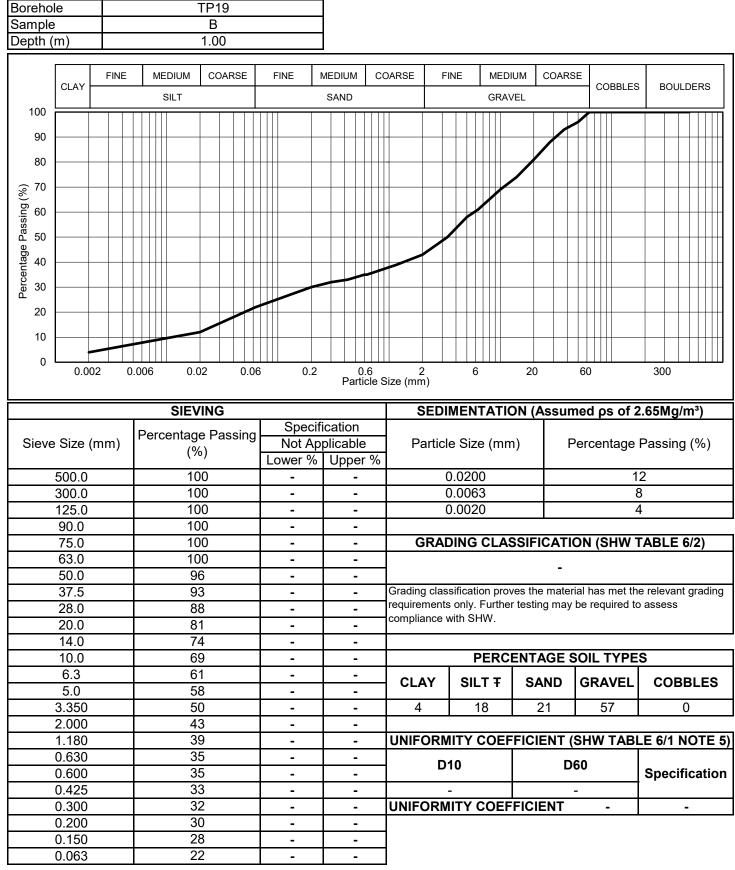
Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type



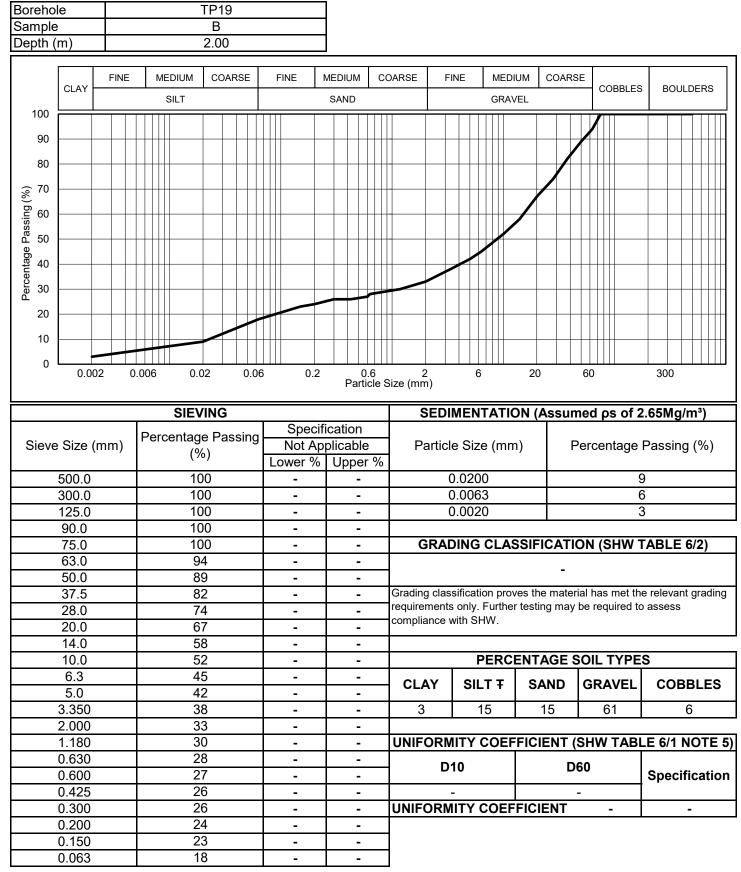
Remarks

F Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type



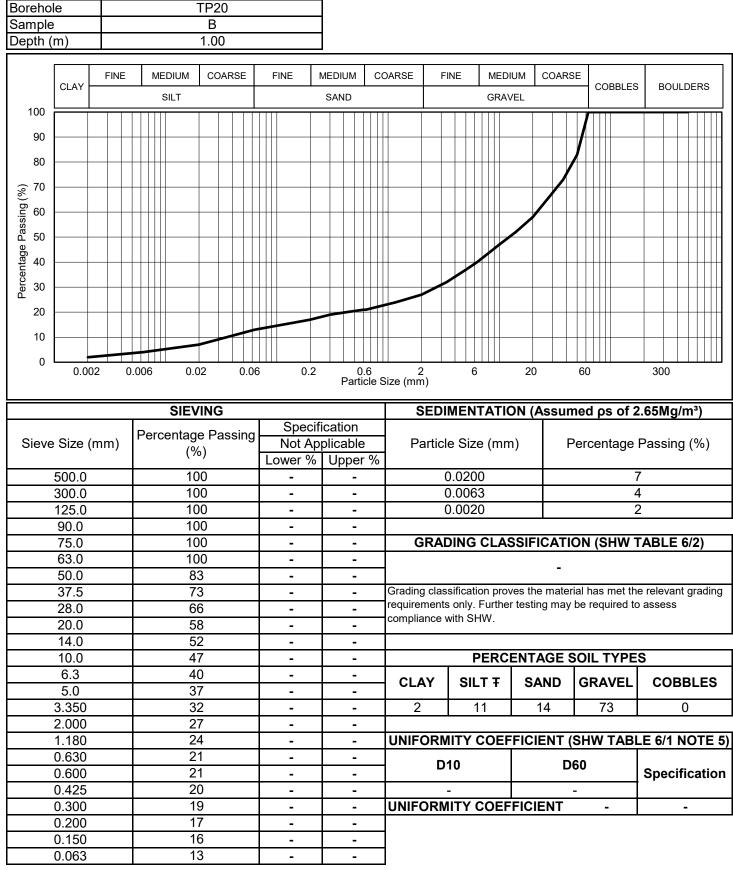
Remarks

F Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns



Remarks

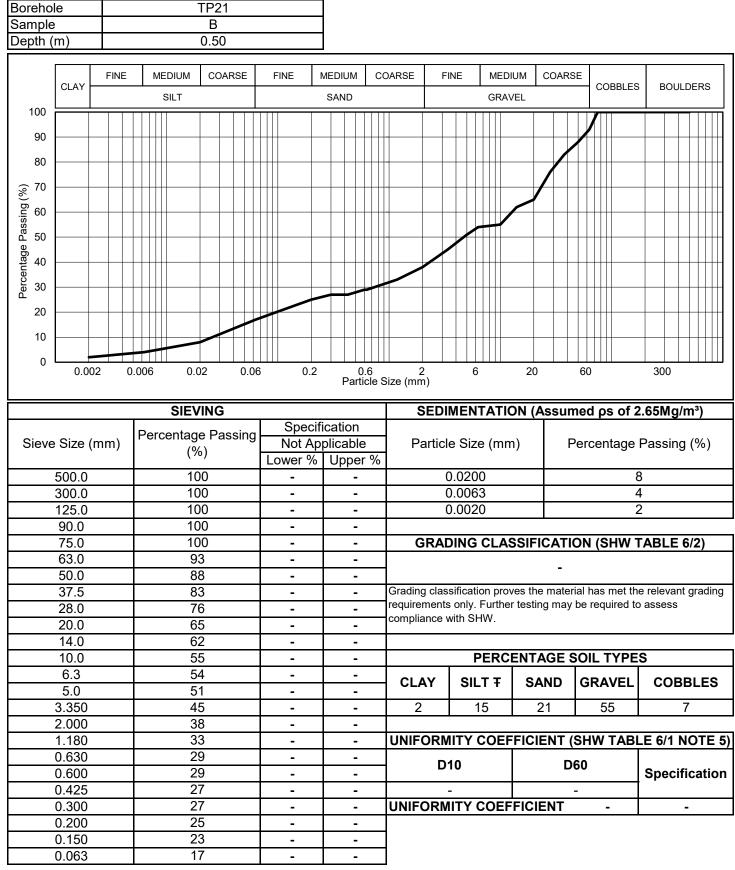
T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type


Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

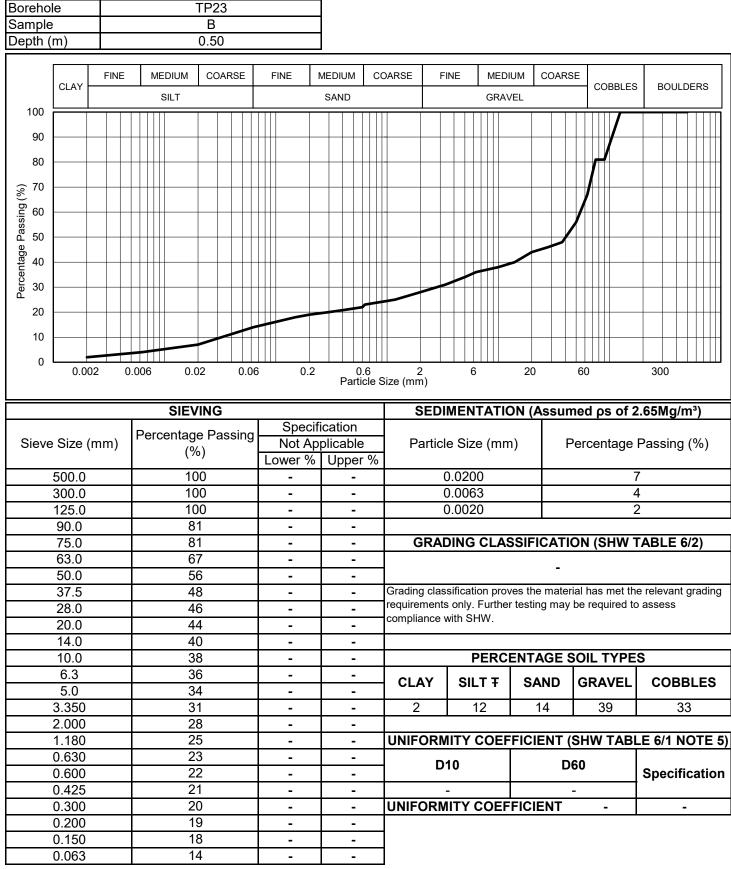
PARTICLE SIZE DISTRIBUTION - BS 1377 - 2 : 2022 : CLAUSE 10

Page 15 of 32



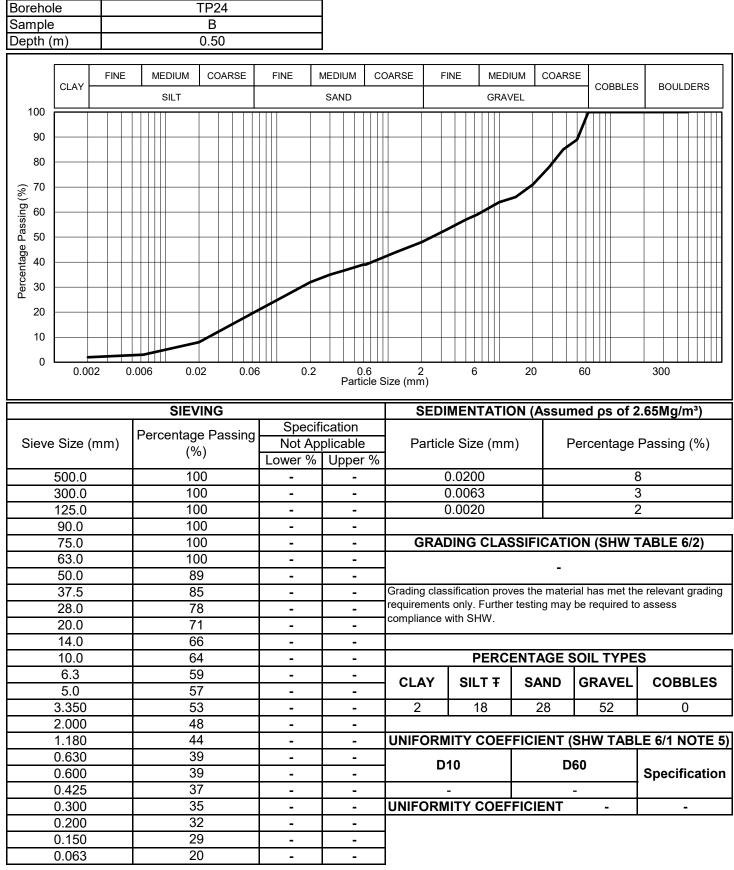
Remarks

F Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type



Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type


Remarks

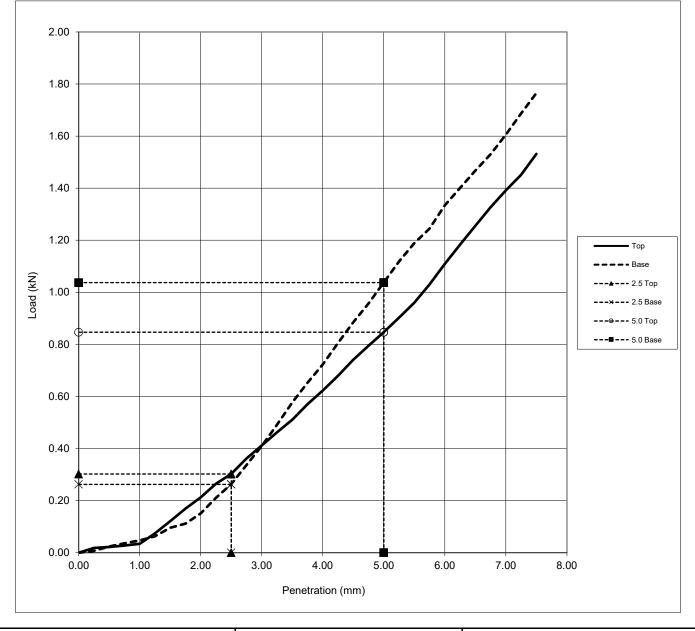
F Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

PARTICLE SIZE DISTRIBUTION - BS 1377 - 2 : 2022 : CLAUSE 10

Page 18 of 32

Remarks

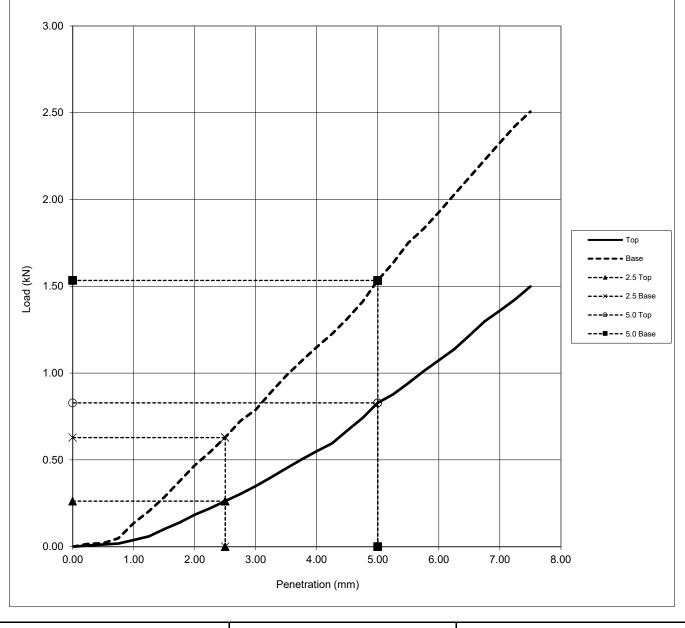
T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type



TRIAL PIT	SAMPLE	DEPTH (m)	BS TEST METHOD * (see below)	GREATE	ERIAL R THAN 6.3mm	MAXIMUM DRY DENSITY (Mg/m³)	MINIMUM DRY DENSITY (Mg/m³)
TP03	В	0.60	12.1 / 12.3	36	52	2.08	1.35
TP16	В	0.90	12.1 / 12.3	35	49	2.03	1.37
TP23	В	0.50	12.1 / 12.3	45	68	2.05	1.39
TP24	В	0.50	12.1 / 12.3	63	72	1.94	1.40

* Tested in	* Tested in accordance with the following clauses of BS 1377 - 2 : 2022 :						
Multi-poin	t Maximum density determination	Minimum density	determination and one-point				
by compa	ction:	Maximum density	/ determinations:				
11.3	2.5kg rammer, 3 layers, 27 blows 12.1 Maximum density of sands						
11.4	11.4 2.5kg rammer, 3 layers, 62 blows		Maximum density of gravels				
11.5	4.5kg rammer, 5 layers, 27 blows	12.3	Minimum density of sands				
11.6	4.5kg rammer, 5 layers, 62 blows	12.4	Minimum density of gravels				
11.7	Vibrating hammer, 3 layers	12.5	Derivation of density index				

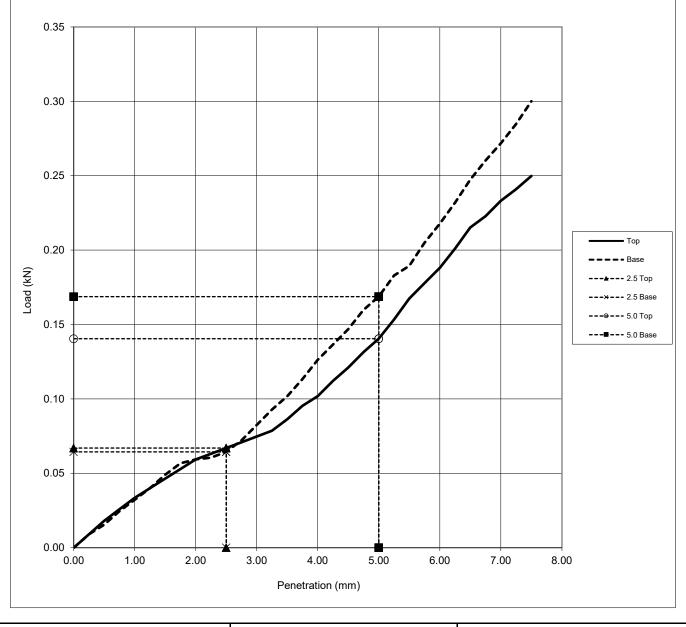
SUMMARY OF MINIMUM AND MAXIMUM DRY DENSITY TEST RESULTS



Water Content	10.1 %		Top Base		
Bulk Density	2.09 Mg/m ³	Water Content	10.1 10.2 %	Borehole	TP03
Dry Density	1.90 Mg/m ³	CBR (%) at 2.5mm	2.3 2.0 %	Sample	В
Compactive Effort	2.5kg Rammer	CBR (%) at 5.0mm	4.2 5.2 %	Depth (m)	0.60
Surcharge Used	- kg	Curve Corrected	No	Lime Added (%)	-
Soaking Period	- days	Test Condition	Unsoaked	Cement Added (%)	-
Amount of swell	- mm	Material Removed	27 %	Accepted CBR (%)	5.2

Remarks;

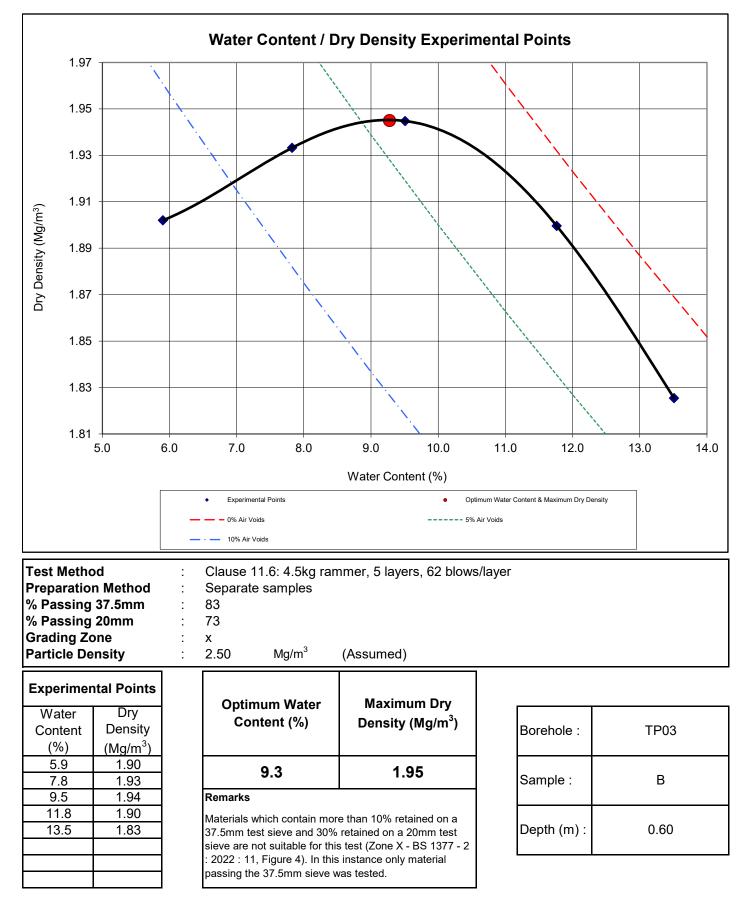
DETERMINATION OF CALIFORNIA BEARING RATIO (CBR) Tested in accordance with BS 1377 - 2 : 2022 : Clause 15



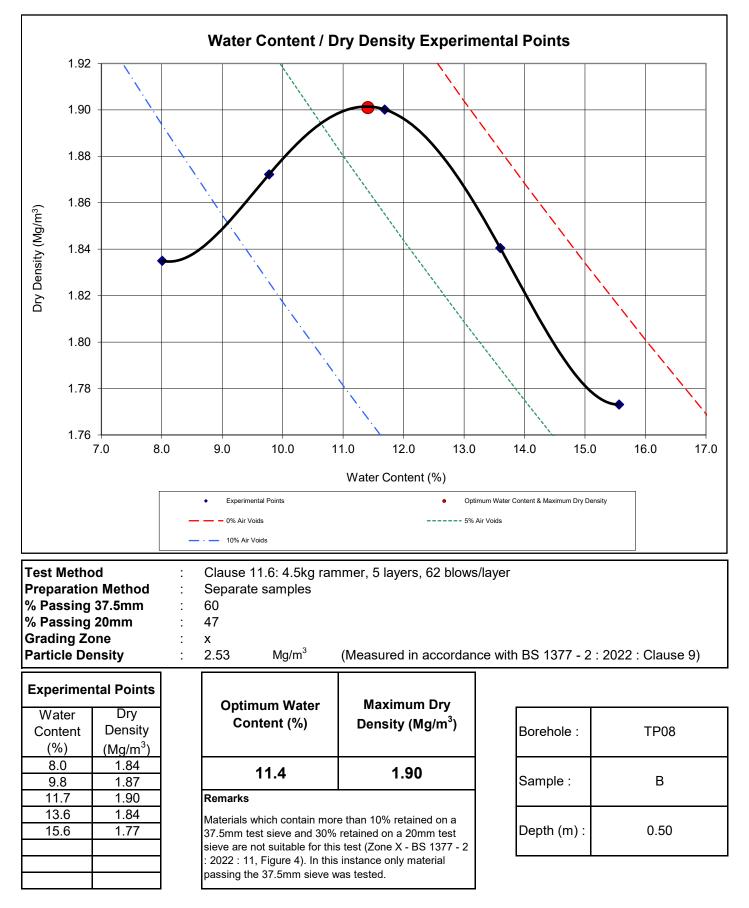
Water Content	10.3 %		Top Base		
Bulk Density	2.14 Mg/m ³	Water Content	10.2 10.5 %	Borehole	TP12
Dry Density	1.94 Mg/m ³	CBR (%) at 2.5mm	2.0 4.8 %	Sample	В
Compactive Effort	2.5kg Rammer	CBR (%) at 5.0mm	4.1 7.7 %	Depth (m)	1.00
Surcharge Used	- kg	Curve Corrected	No	Lime Added (%)	-
Soaking Period	- days	Test Condition	Unsoaked	Cement Added (%)	-
Amount of swell	- mm	Material Removed	31 %	Accepted CBR (%)	7.7

Remarks;

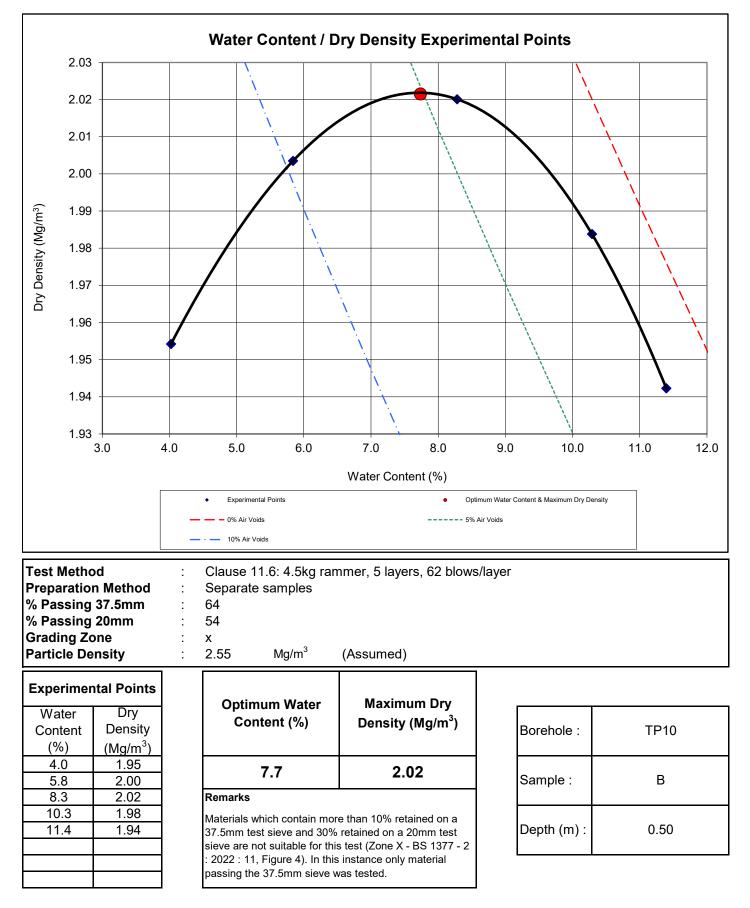
DETERMINATION OF CALIFORNIA BEARING RATIO (CBR) Tested in accordance with BS 1377 - 2 : 2022 : Clause 15

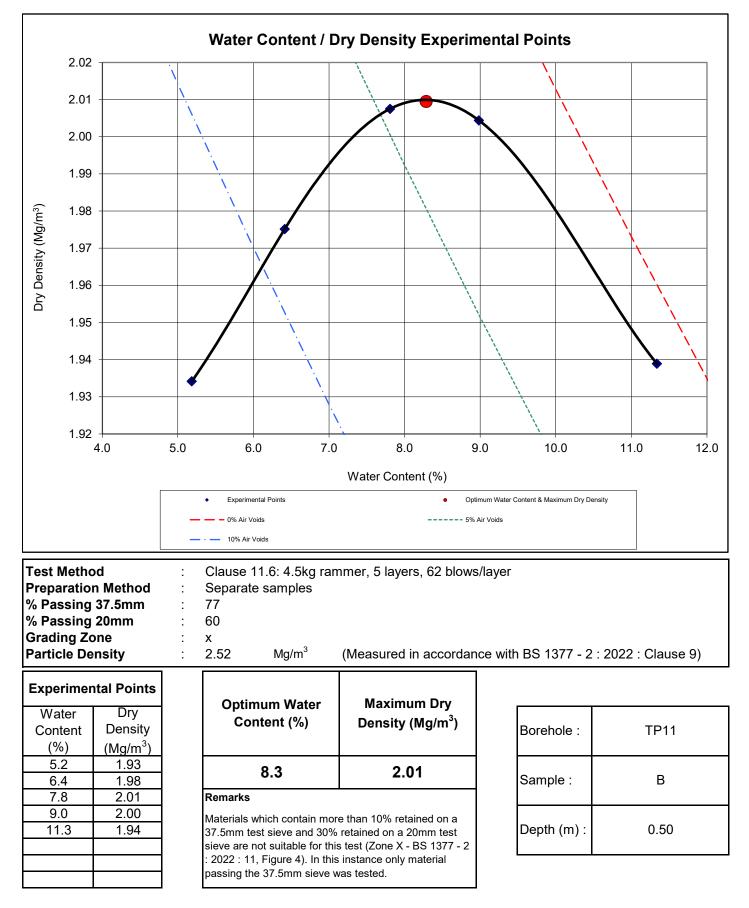


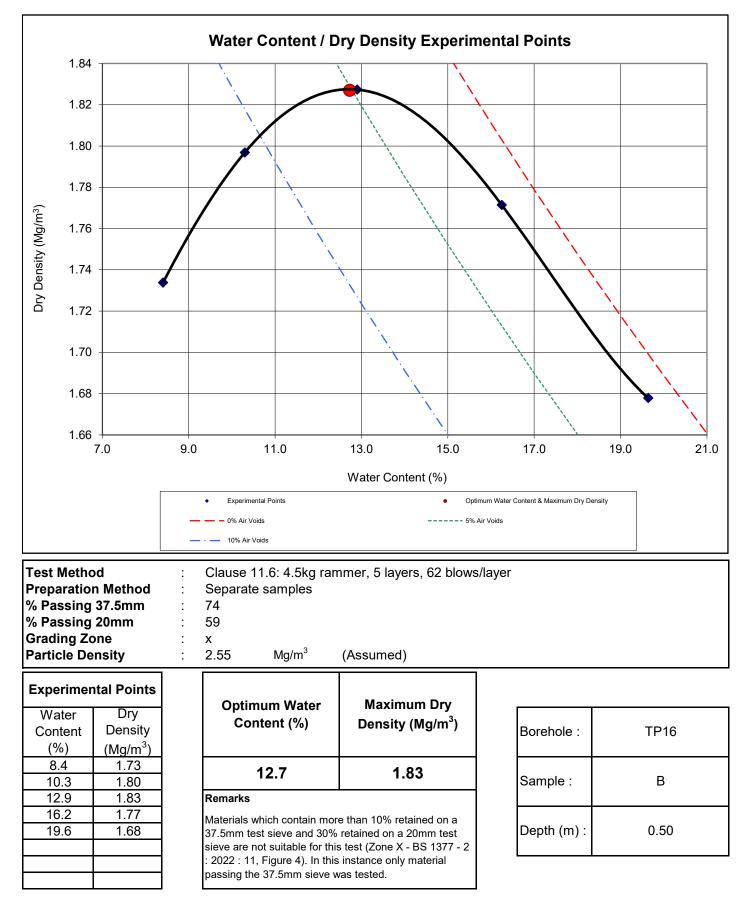
Water Content	16.9 %		Top Base		
Bulk Density	2.01 Mg/m ³	Water Content	17.4 16.5 %	Borehole	TP16
Dry Density	1.72 Mg/m ³	CBR (%) at 2.5mm	0.5 0.5 %	Sample	В
Compactive Effort	2.5kg Rammer	CBR (%) at 5.0mm	0.7 0.8 %	Depth (m)	0.50
Surcharge Used	- kg	Curve Corrected	No	Lime Added (%)	-
Soaking Period	- days	Test Condition	Unsoaked	Cement Added (%)	-
Amount of swell	- mm	Material Removed	41 %	Accepted CBR (%)	0.8

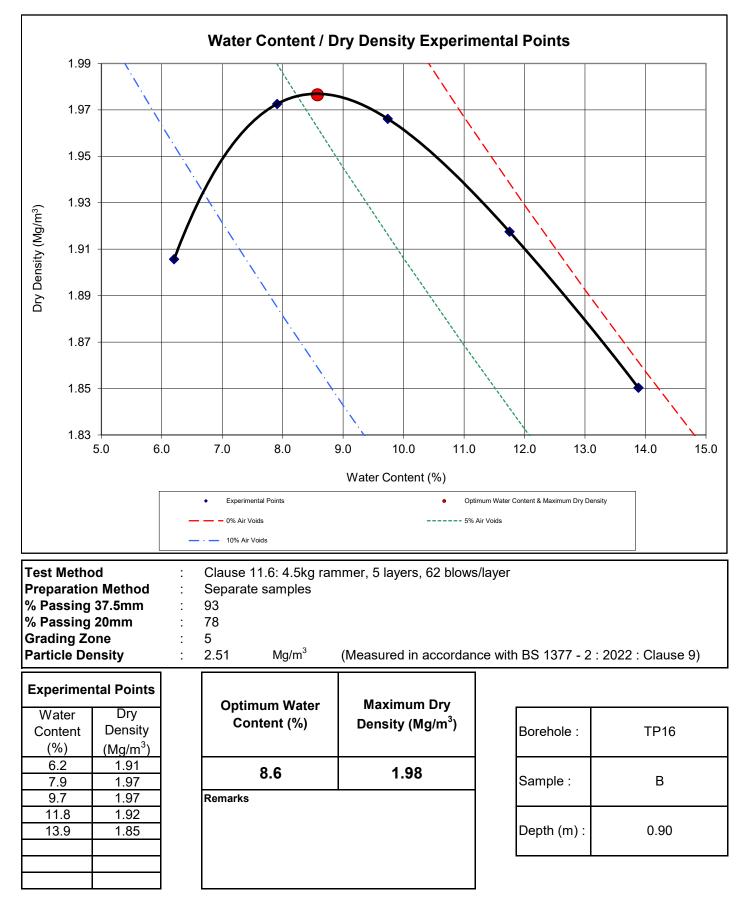

Remarks;

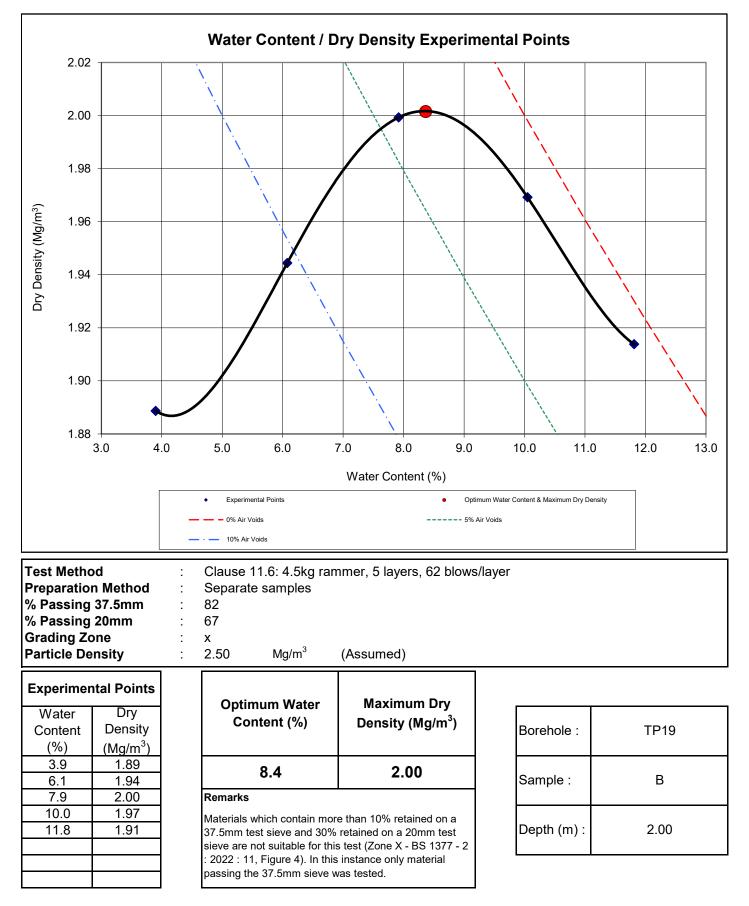
DETERMINATION OF CALIFORNIA BEARING RATIO (CBR) Tested in accordance with BS 1377 - 2 : 2022 : Clause 15

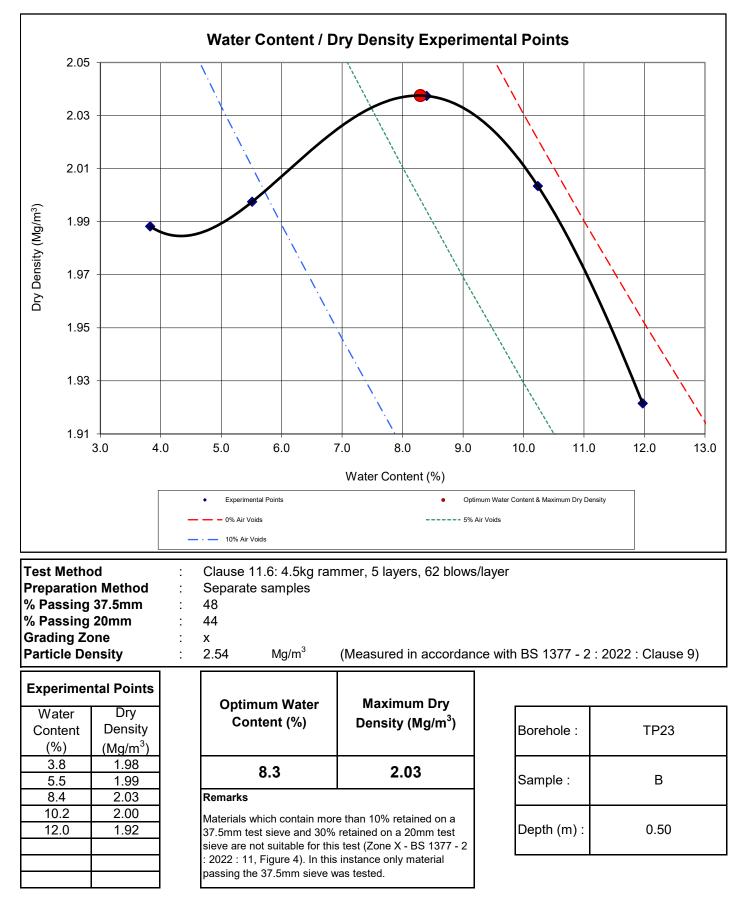






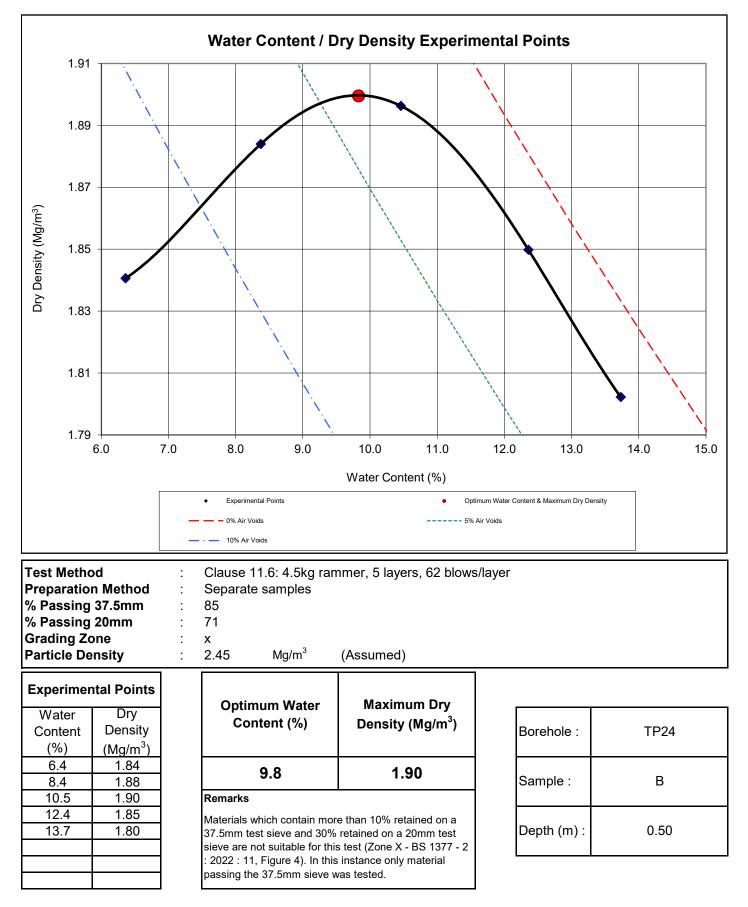






Tested in accordance with BS 1377 - 2 : 2022

DETERMINATION OF WATER CONTENT / DRY DENSITY RELATIONSHIP



Tested in accordance with BS 1377 - 2 : 2022

DETERMINATION OF WATER CONTENT / DRY DENSITY RELATIONSHIP

Tested in accordance with BS 1377 - 2 : 2022

DETERMINATION OF WATER CONTENT / DRY DENSITY RELATIONSHIP

Appendix C – Environmental Testing Results

Issued:

08-Mar-24

Certificate Number 24-04340

Client Curtins Consulting 29 St Vincent Place Glasgow G1 2DT

- Our Reference 24-04340
- Client Reference ~ (not supplied)
 - Order No ~ (not supplied)
 - Contract Title ~ KNOCK
 - Description 18 Soil samples.
 - Date Received 23-Feb-24
 - Date Started 29-Feb-24
 - Date Completed 08-Mar-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lopmood

Kirk Bridgewood General Manager

Our Ref 24-04340 *Client Ref Contract Title* KNOCK

Lontract litle KNOCK				1					
		_	Lab No		2306228	2306229	2306230	2306231	2306232
		San	nple ID ~	TP22	TP11	TP12	TP08	TP06	TP05
			Depth ~	0.80	0.50	0.50	0.50	0.10	0.50
			ther ID ~						
		-	е Туре ~	ES	ES	ES	ES	ES	ES
		Samplin	-	12/02/2024	13/02/2024	13/02/2024	13/02/2024	13/02/2024	13/02/2024
		Samplin	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	7.9	3.7	5.3	3.0	3.2	3.5
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1	0.8	< 0.1	< 0.1	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	24	23	21	17	11	40
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg		13	15	4.6	7.1	20
Lead	DETSC 2301#	0.3	mg/kg		8.6	14	5.8	18	6.2
Magnesium Aqueous Extract (2:1)	DETSC 2076*	10	mg/l				< 10		
Mercury	DETSC 2325#	0.05	mg/kg	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
Nickel	DETSC 2301#	1	mg/kg		20	17	14	5.1	47
Selenium	DETSC 2301#	0.5	mg/kg		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg		52	89	48	49	83
Inorganics	DE13C 2301#		116/16	55	52	05	-0	75	0.
pH	DETSC 2008#		рH	7.8	7.2	6.8	6.9	6.5	7.3
Cyanide, Total	DETSC 2008#	0.1	mg/kg		0.2	< 0.1	0.1	0.5	< 0.1
Organic matter	DETSC 2002#	0.1	<u> </u>		0.2	0.4	0.1	4.8	0.2
Ammonia Aqueous Extract as N	DETSC 2002#	10	mg/l	0.5	0.0	0.4	< 10	4.0	0.2
Chloride Aqueous Extract (2:1)	DETSC 2055	10	mg/l				4.0		
Nitrate Aqueous Extract as NO3 (2:1)	DETSC 2055	1	mg/l				2.9		
Sulphate Aqueous Extract as NO3 (2:1)		10		12	< 10	14	2.9	29	< 10
Sulphur as S, Total			mg/l		< 10	14	< 0.01	29	< 1(
-	DETSC 2320	0.01	%						
Sulphate as SO4, Total	DETSC 2321#	0.01	%				0.02		
Petroleum Hydrocarbons		0.04	//	0.04	. 0. 01	0.04	.0.01	.0.01	. 0. 04
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg		< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg		< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg		< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Key: ~ Sample details provided by client	and can affect th	ne validity c	of the result	ts: * -not accre	edited.: # -MC	ERTS (accred	itation only a	pplies if repor	t

carries the MCERTS logo).

Our Ref 24-04340 *Client Ref Contract Title* KNOCK

			Lab No	2306227	2306228	2306229	2306230	2306231	2306232
		Sam	ple ID ~	TP22	TP11	TP12	TP08	TP06	TP05
			Depth ~	0.80	0.50	0.50	0.50	0.10	0.50
		Ot	her ID ~						
		Sample	e Type ~	ES	ES	ES	ES	ES	ES
				12/02/2024	13/02/2024	13/02/2024	13/02/2024	13/02/2024	13/02/2024
		Sampling	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
PAHs		- , ,							
Naphthalene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	0.7	< 0.3

Key: ~ Sample details provided by client and can affect the validity of the results: * -not accredited.: # -MCERTS (accreditation only applies if report carries the MCERTS logo).

Our Ref 24-04340 *Client Ref Contract Title* KNOCK

Contract litle KNOCK				r					
			Lab No		2306234	2306235	2306236	2306237	2306238
		San	nple ID ~	TP03	TP24	TP19	TP20	TP14	TP10
		Depth ~			0.50	0.70	0.50	0.10	0.50
			ther ID ~						
		Sampl	e Type ~	ES	ES	ES	ES	ES	ES
		Samplin	g Date ~	13/02/2024	13/02/2024	14/02/2024	14/02/2024	14/02/2024	13/02/2024
		Samplin	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	3.4	5.3	12	21	5.7	4.1
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	0.3	< 0.2	0.4	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg		< 0.1	< 0.1	< 0.1	0.1	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg		27	25	34	14	23
Chromium, Hexavalent	DETSC 2204*	1	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg		13	9.9	27	7.8	14
Lead	DETSC 2301#	0.3	mg/kg			14	11	20	5.9
Magnesium Aqueous Extract (2:1)	DETSC 2001#	10	mg/l		< 10				< 10
Mercury	DETSC 2325#	0.05	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2323#	0.05	mg/kg		30	16	41	7.5	23
Selenium	DETSC 2301#	0.5	mg/kg			0.8	< 0.5		< 0.5
Zinc		0.5	mg/kg			88	63	< 0.5 60	41
	DETSC 2301#	<u> </u>	під/кд	140	57	00	05	60	41
Inorganics pH	DETCC 2000#			6.6	6.8	6 5	6.9	6.4	6.7
	DETSC 2008#	0.1	pH			6.5		6.4	6.7
Cyanide, Total	DETSC 2130#	0.1	mg/kg		0.1	0.4	< 0.1	0.9	0.1
Organic matter	DETSC 2002#	0.1	%	0.5	0.5	2.2	0.4	7.1	0.5
Ammonia Aqueous Extract as N	DETSC 2119*	10	mg/l		< 10				< 10
Chloride Aqueous Extract (2:1)	DETSC 2055	1	mg/l		5.0				5.1
Nitrate Aqueous Extract as NO3 (2:1)	DETSC 2055	1	mg/l		3.0				1.9
Sulphate Aqueous Extract as SO4 (2:1)		10	mg/l	< 10	< 10	< 10	< 10	37	< 10
Sulphur as S, Total	DETSC 2320	0.01	%		< 0.01				< 0.01
Sulphate as SO4, Total	DETSC 2321#	0.01	%		0.01				0.02
Petroleum Hydrocarbons		· · · · · · · · ·						r.	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.09
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg		< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg		< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg			< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg			< 0.9	< 0.9		< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg			< 0.5	< 0.5		< 0.5
Aromatic C16-C21	DETSC 3072#	0.5	mg/kg			< 0.5	< 0.6		< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg			< 1.4	< 1.4		< 1.4
Aromatic C5-C35		1.4	mg/kg			< 1.4	< 1.4		< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*					< 10		< 10	
Key: ~ Sample details provided by client	DETSC 3072* and can affect th	10 ne validity d	mg/kg	< 10 s: * -not accre	< 10 edited.: # -MC		< 10 Itation only a		< 10

carries the MCERTS logo).

Our Ref 24-04340 *Client Ref Contract Title* KNOCK

			Lab No	2306233	2306234	2306235	2306236	2306237	2306238
		Sam	ple ID ~	TP03	TP24	TP19	TP20	TP14	TP10
			Depth ~	0.20	0.50	0.70	0.50	0.10	0.50
			Other ID ~						
			е Туре ~		_	ES	ES	ES	ES
				13/02/2024	13/02/2024	14/02/2024	14/02/2024	14/02/2024	13/02/2024
		Sampling			n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
PAHs	1								
Naphthalene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	2.3	< 0.3

Key: ~ Sample details provided by client and can affect the validity of the results: * -not accredited.: # -MCERTS (accreditation only applies if report carries the MCERTS logo).

Our Ref 24-04340 *Client Ref Contract Title* KNOCK

Contract Intie KNOCK				r					
		-	Lab No		2306240	2306241	2306242	2306243	2306244
		San	nple ID ~	TP04	TP01	TP16	TP09	TP07	TP02
		_	Depth ~	0.10	0.10	0.50	0.50	0.50	0.20
			ther ID ~						
		-	e Type ~	ES	ES	ES	ES		ES
		-	-	13/02/2024					14/02/2024
_			g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals		1 1							
Arsenic	DETSC 2301#	0.2	mg/kg		2.9				
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg		0.4				
Cadmium	DETSC 2301#	0.1	mg/kg		< 0.1				
Chromium	DETSC 2301#	0.15	mg/kg	18	14				
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0				
Copper	DETSC 2301#	0.2	mg/kg	6.3	5.4				
Lead	DETSC 2301#	0.3	mg/kg		9.1				
Magnesium Aqueous Extract (2:1)	DETSC 2076*	10	mg/l			< 10	< 10	< 10	< 1(
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05				
Nickel	DETSC 2301#	1	mg/kg		6.8				
Selenium	DETSC 2301#	0.5	mg/kg		< 0.5				
Zinc	DETSC 2301#	1	mg/kg		31				
Inorganics	DE13C 2301#		116/16	52	51				
pH	DETSC 2008#		рH	6.4	5.9	7.1	6.6	6.5	6.4
Cyanide, Total	DETSC 2008#	0.1	mg/kg	0.4	0.6	/.1	0.0	0.5	0
Organic matter	DETSC 2130#	0.1	<u>111g/ kg</u> %	2.3	6.1				
Ammonia Aqueous Extract as N	DETSC 2002# DETSC 2119*	10		2.5	0.1	< 10	< 10	< 10	< 10
Chloride Aqueous Extract (2:1)	-		mg/l			3.9	4.1	5.9	
	DETSC 2055	1	mg/l						5.6
Nitrate Aqueous Extract as NO3 (2:1)	DETSC 2055	1	mg/l	12	20	3.2	1.7	5.0	3.6
Sulphate Aqueous Extract as SO4 (2:1)		10	mg/l	12	20	< 10	< 10	< 10	< 10
Sulphur as S, Total	DETSC 2320	0.01	%			< 0.01	0.01	< 0.01	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%			0.02	0.02	0.02	0.04
Petroleum Hydrocarbons	Т	1 1						1	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg		< 0.01				
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg		< 0.01				
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01				
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5				
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2				
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5				
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4				
Aliphatic C5-C35	DETSC 3072*	10	mg/kg		< 10				
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg		< 0.01				
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg		< 0.01				
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg		< 0.01				
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg		< 0.9				
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg		< 0.5				
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg		< 0.5				
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg		< 1.4				
Aromatic C5-C35					< 1.4				
TPH Ali/Aro Total C5-C35	DETSC 3072*	10 10	mg/kg		< 10				
Key: ~ Sample details provided by client	DETSC 3072*		mg/kg	< 10		FRIS laccred	itation only a	nnlies it renor	+

carries the MCERTS logo).

Our Ref 24-04340 *Client Ref Contract Title* KNOCK

			Lab No		2306240	2306241	2306242	2306243	2306244
		Sam	nple ID ~	TP04	TP01	TP16	TP09	TP07	TP02
			Depth ~	0.10	0.10	0.50	0.50	0.50	0.20
		Ot	Other ID ~						
		Sample	Sample Type ~		ES	ES	ES	ES	ES
		Samplin	g Date ~	13/02/2024	13/02/2024	14/02/2024	13/02/2024	13/02/2024	14/02/2024
		Sampling	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
PAHs									
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1				
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6				
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	1.7				

Key: ~ Sample details provided by client and can affect the validity of the results: * -not accredited.: # -MCERTS (accreditation only applies if report carries the MCERTS logo).

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 24-04340 *Client Ref Contract Title* KNOCK

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2306227	TP22 0.80	SOIL	NAD	none	Josh Best
2306228	TP11 0.50	SOIL	NAD	none	Josh Best
2306229	TP12 0.50	SOIL	NAD	none	Josh Best
2306230	TP08 0.50	SOIL	NAD	none	Josh Best
2306231	TP06 0.10	SOIL	NAD	none	Josh Best
2306232	TP05 0.50	SOIL	NAD	none	Josh Best
2306233	TP03 0.20	SOIL	NAD	none	Josh Best
2306234	TP24 0.50	SOIL	NAD	none	Josh Best
2306235	TP19 0.70	SOIL	NAD	none	Josh Best
2306236	TP20 0.50	SOIL	NAD	none	Josh Best
2306237	TP14 0.10	SOIL	NAD	none	Josh Best
2306238	TP10 0.50	SOIL	NAD	none	Josh Best
2306239	TP04 0.10	SOIL	NAD	none	Josh Best
2306240	TP01 0.10	SOIL	NAD	none	Josh Best

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriat

Information in Support of the Analytical Results

Our Ref 24-04340 Client Ref ~ Contract ~ KNOCK

Containers Received & Deviating Samples

Date

		Sampled			e containe
Lab No	Sample ID ~	~	Containers Received	Holding time exceeded for tests	for tests
2306227	TP22 0.80 SOIL	12/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306228	TP11 0.50 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306229	TP12 0.50 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306230	TP08 0.50 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days), pH + Conductivity (7 days)	
2306231	TP06 0.10 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306232	TP05 0.50 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306233	TP03 0.20 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306234	TP24 0.50 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days), pH + Conductivity (7 days)	
2306235	TP19 0.70 SOIL	14/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306236	TP20 0.50 SOIL	14/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306237	TP14 0.10 SOIL	14/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306238	TP10 0.50 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2306239	TP04 0.10 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306240	TP01 0.10 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2306241	TP16 0.50 SOIL	14/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2306242	TP09 0.50 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days), pH + Conductivity (7 days)	
2306243	TP07 0.50 SOIL	13/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days), pH + Conductivity (7 days)	
2306244	TP02 0.20 SOIL	14/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Information in Support of the Analytical Results

Our Ref 24-04340 Client Ref ~ Contract ~ KNOCK

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix D – Tier 1 Thesholds.

Adopted Soil Generic Assessment Criteria Sandy loam with 1% SOM

Sandy loam w	III 1% 50W					
Contaminants	Residential with	Residential without	Allotments	Commercial	Public open space	Public park
	home grown produce	home grown produce			near residential housing POS _{resi}	POS _{park}
Metals						
Beryllium	1.7	1.7	35	12	2.2	63
Boron	290	11,000	45	240,000	21,000	46,000
Cadmium	10 ⁽¹³ 22	85 ⁽¹³ 150	1.8 <u>3.9</u>	230 <u>410</u>	120 <u>220</u>	560 <u>880</u>
Chromium III	910	910	18,000	8,600	1,500	33,000
Chromium VI	6 <u>21</u>	6 <u>21</u>	1.8 <u>170</u>	33 <u>49</u>	7.7 <u>21</u>	220 <u>250</u>
Lead	200	<u>310</u>	<u>80</u>	<u>2,300</u>	<u>630</u>	<u>1,300</u>
Mercury (elemental)	1	1	26	26	16	26 ⁽⁸ [<i>30</i>]
Mercury (inorganic)	170	240	80	3600	120	240
Nickel	1 <i>30 ⁽¹⁰</i>	180 (10	53 ⁽¹¹	980 ⁽¹⁰	230	800
Vanadium	410	1200	91	9000	2000	5000
Copper	2400	7100	520	68000	12000	44000
Zinc	3700	40000	620	730000	81000	170000
Semi-Metals and non-metals						
Arsenic	32 ⁽¹² 37	35 ⁽¹² 40	43 ⁽¹² <u>49</u>	640 ⁽¹² 640	<i>79</i> <u>79</u>	<i>170 <u>170</u></i>
Antimony		550		7500	1500	3300
Selenium	350	600	120	13000	1100	1800
Inorganic chemicals						
Cyanide	34	34	34	34	34	34
Organic contaminants						
Aliphatic risk banded hydrocarbons - TPHCWG method						
EC _{>5} - EC ₆	42	42	730	3200	570000	95000
EC _{>6} - EC ₈	100	100	2300	7800	600000	150000
EC _{>8} - EC ₁₀	27	27	320	2000	13000	14000
EC10-EC12	130	130	2200	9700	13000	21000
EC ₁₂ -EC ₁₆	1100	1100	11000	59000	13000	25000
$EC_{s16} - EC_{35}$	65000	65000	260000	1600000	250000	450000
$EC_{>35} - EC_{44}$	65000	65000	260000	1600000	250000	450000
Aromatic risk banded hydrocarbons - TPHCWG method	03000	05000	200000	1000000	230000	430000
EC> ₅ - EC ₇	70	270	10	00000	50000	70000
• •	70	370	13	26000	56000	76000
EC>7 - EC8	130	860	22	56000	56000	87000
EC _{>8} - EC ₁₀	34	47	8.6	3500	5000	7200
EC ₁₀ - EC ₁₂	74	250	13	16000	5000	9200
EC12 - EC16	140	1800	23	36000	5100	10000
EC _{>16} - EC ₂₁	260	1900	46	28000	3800	7600
EC _{>21} - EC ₃₅	1100	1900	370	28000	3800	7800
EC>35 - EC44	1100	1900	370	28000	3800	7800
		1000		20000	0000	
Aliph + Arom EC >44-70	1600	1900	1200	28000	3800	7800
Aromatic						
Benzene	0.08	0.3	0.017	28	72	90
Ethyl benzene	65	170	16	520 ⁽⁸ [17000]	520 ⁽⁸ [24000]	520 ⁽⁸ [17000]
Toluene	120	610	22	860 ⁽⁸ [59000]	860 ⁽⁸ [56000]	860 ⁽⁸ [87000]
Xylene ⁽⁹				480 ⁽⁸ [69000]	480 ⁽⁸ [41000]	480 ⁽⁸ [17000]
•	41	53	28			
Phenol	180	310	66	760 ⁽¹⁴ (31000)	760 ⁽¹⁴ (10000)	760 ⁽¹⁴ (7600)
Polycyclic Aromatic Hydrocarbons (PAH)	0.0	2.2	4.4	100	4000	1000
Naphthalene Acenaphthylene	2.3	2.3 2900	4.1	190 82000	4900 15000	1200
Acenaphthene	170 210	2900 3000	28 34	83000 84000	15000	29000 29000
Fluorene	170	2800	34 27	84000 63000	9900	29000 20000
Phenanthrene	95	2800 1300	27 15	22000	3100	6200
Anthracene	95 2400	31000	15 380	52000 520000	74000	150000
Fluoranthene	2400	1500	52	23000	3100	6300
Pyrene	620	3700	110	54000	7400	15000
		11	2.9	170	29	49
Benz(a)anthracene	1.2					
Benz(a)anthracene Chrysene	7.2 15		4.1	350	57	9.5
Chrysene	15	30 3.9	4.1 0.99	350 44	57 7.1	93 13
Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	15 2.6	30	0.99			
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	15 2.6 77	30 3.9 110	0.99 37	44 1200	7.1 190	13 370
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	15 2.6 77 2.2	30 3.9 110 3.2	0.99 37 0.97	44 1200 35	7.1 190 5.7	13 370 11
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene	15 2.6 77 2.2 27	30 3.9 110 3.2 45	0.99 37 0.97 9.5	44 1200 35 500	7.1 190 5.7 82	13 370 11 150
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene	15 2.6 77 2.2 27 0.24	30 3.9 110 3.2 45 0.31	0.99 37 0.97 9.5 0.14	44 1200 35 500 3.5	7.1 190 5.7	13 370 11 150 1.1
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene	15 2.6 77 2.2 27	30 3.9 110 3.2 45	0.99 37 0.97 9.5	44 1200 35 500	7.1 190 5.7 82 0.57	13 370 11 150
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ah)aptrylene Chlorinated Aliphatic Hydrocarbons	15 2.6 77 2.2 27 0.24 320	30 3.9 110 3.2 45 0.31 360	0.99 37 0.97 9.5 0.14 290	44 1200 35 500 3.5 3900	7.1 190 5.7 82 0.57 640	13 370 11 150 1.1 1400
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride	15 2.6 77 2.2 27 0.24 320 0.00064	30 3.9 110 3.2 45 0.31 360 0.00077	0.99 37 0.97 9.5 0.14 290	44 1200 35 500 3.5 3900 0.059	7.1 190 5.7 82 0.57 640 3.5	13 370 11 150 1.1 1400 4.8
Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene <i>Chlorinated Aliphatic Hydrocarbons</i> Vinyl chloride Trichloroethene (TCE)	15 2.6 77 2.2 27 0.24 320 0.00064 0.016	30 3.9 110 3.2 45 0.31 360 0.00077 0.017	0.99 37 0.97 9.5 0.14 290 0.00055 0.041	44 1200 35 500 3.5 3900 0.059 1.2	7.1 190 5.7 82 0.57 640 3.5 120	13 370 11 150 1.1 1400 4.8 70
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride	15 2.6 77 2.2 27 0.24 320 0.00064	30 3.9 110 3.2 45 0.31 360 0.00077	0.99 37 0.97 9.5 0.14 290	44 1200 35 500 3.5 3900 0.059	7.1 190 5.7 82 0.57 640 3.5	13 370 11 150 1.1 1400 4.8

Notes

1. All values above are in mg/kg

2. Numbers in bold are SGVs or GAC that are derived based on SGV report input parameters, numbers in italics are S4ULs, numbers in bold-italics are based on EIC/AGS/CL:AIRE numbers & input parameters and underlined numbers are C4SLs

parameters and <u>underlined numbers are C4SLs</u>3. Soil organic matter (SOM) is assumed to be 1% - DEFAULT VALUE

4. Soil type is assumed to be sandy loam - DEFAULT SOIL TYPE

5. For residential, the building type is conservatively assumed to be a small terrace house where the development includes bungalows change to more conservative bungalow setting in computer model

6. For commercial, the building type is conservatively assumed to be a pre 1970s office building, where the proposed development comprises houses, flat with living spaces changes setting in model accordingly

7. For classrooms consider increasing the dust loading fator in the 'Soil and Building Data' of the CLEA 1.04 model from 50 to 100 μ g m⁻³

8. Based on vapour saturation limt as suggested by EA / [] model value

9. Lowest of o-, m- and p-xylene

10. Based on comparison of inhalation exposure with inhalation TDI

11. Based on comparison of oral, dermal, and inhalation exposure with the oral TDI

12. Based on a comparison of oral and dermal soil exposure with oral Index Dose only

13. Averaged over and based on lifetime exposure

14. Based on critical concentration for skin irritation in humans arising from contact with phenol in aqueous solution (number in brackets based on health effects following long term exposure for illustration)

15. NA: Not applicable

Curtins

Appendix E – Qualitative Risk Assessment Rationale

The site-specific risk assessment, presented in this report, follows the principle of establishing whether there is a viable linkage between a contaminant source to a potential receptor, via an exposure pathway.

The risk assessment corresponds with the total site area and incorporates both descriptive (qualitative) and, where available, numerical (quantitative) lines of evidence.

Risk assessment is the process of collating known information on a hazard or set of hazards to estimate actual or potential risk to receptors. The receptor may be humans, a water resource, a sensitive local ecosystem, or future construction materials. Receptors can be connected to the source by one or several exposure pathways such as direct contact for example. Risks are managed by isolating the receptor or intercepting the exposure pathway or by isolating or removing the hazard.

Without the three essential components of a source, pathway, and receptor there can be no risk. Therefore, the presence of contaminant source on a site does not necessarily mean there is a risk.

The risk assessment considers the likelihood of a particular event taking place (accounting for the presence of the source and receptor and the viability of the exposure pathway) in conjunction with the severity of the potential consequence (accounting for the potential severity of the hazard and the sensitivity of the receptor).

In the risk assessment the consequence of the hazard has been classified as severe, medium, mild, or minor and the probability (likelihood) of the circumstances occurring classified as high likelihood or low likelihood or unlikely.

The consequences and probabilities are subsequently cross correlated to give a qualitative estimation of the risk using Department of the Environment risk classifications as detailed in the table below and as referenced in CIRIA C552.

		Consequence					
		Severe	Medium	Mild	Minor		
>=	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk		
Probability (Likelihood)	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk		
Proba _ikeli	Low Likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk		
	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk		

Phase 2 Ground Investigation Report

Curtins

In accordance with DoE guidance, the following categorisation of **consequence** has been developed.

Classification	Definition	Examples
Severe	Short-term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short- term risk of pollution of sensitive water resource. Catastrophic damage to buildings/property. A short-term risk to an ecosystem or organisation forming part of such ecosystem.	High concentrations of cyanide on the surface of an informal recreation area.Major spillage of contaminants from site into controlled water.Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium	Chronic damage to Human Health. Pollution of sensitive water resources. A significant change in an ecosystem or organism forming part of such ecosystem.	Concentration of a contaminant from site exceeds the generic or site-specific assessment criteria. Leaching of contaminants from a site to a Principal or Secondary A aquifer. Death of a species within a designated nature reserve. Lesser toxic and asphyxiate effects
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures, and services. Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater (Inc. Secondary B aquifers). Damage to building rendering it unsafe to occupy (e.g. foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing, etc). Easily repairable effects of damage to buildings, structures, and services.	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discoloration of concrete.

Phase 2 Ground Investigation Report

Curtins

In accordance with DoE guidance, the following categorisation of probability has been developed.

Classification	Definition
High Likelihood	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and over the long term.
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place and is less likely in the shorter term.
Unlikely	There is a pollution linkage, but circumstances are such that it is improbable that an event would occur even in the very long term.

In accordance with DoE guidance, the following categorisation of **risk** has been developed.

Classification	Definition
Very High Risk	There is a <i>high probability</i> that <i>severe harm</i> could arise to a designated receptor from an identified hazard at the site without appropriate further action.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate further action.
Moderate Risk	It is possible that without appropriate further action harm could arise to a designated receptor. It is relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely that such harm would be relatively mild.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard. It is <i>likely</i> that, at worst, if any harm was realised any effects would be <i>mild</i> .
Negligible Risk	The presence of an identified hazard does not give rise to the potential to cause harm to a designated receptor.

The term 'risk' in this instance refers to the risk that the source, pathway, receptor linkage for a given source of contamination is complete. It does not refer to immediate risk to individuals or features present on the site from potential contaminants and is intended to be used as a tool to assess the necessity of further investigation.